

ACTION RESEARCH PROJECT REPORT

Agile Practices for

Software and Systems Engineering

Ashish Tiwari

Scientist-D

Electronics and IT Department

Bureau of Indian Standards

Project No: AR/0096

26 Aug 2021

Project No: AR/0096

2

Contents
1 Introduction ... 1

1.1 Why Agile? .. 1

2 Scope of work .. 2

3 Methodology used in the work .. 2

4 References ... 2

5 Summary Literature reviewed .. 3

6 Agile Practices – an Overview ... 3

6.1 Lifecycle processes ... 4

6.2 Agile in a Project Context .. 5

7 Areas for Standardization .. 5

7.1 Agile Glossary of Terms .. 6

7.2 Key Artifacts .. 6

7.3 Methods and Techniques .. 7

8 Proposed structure for standards describing Core Agile Practices 8

Project No: AR/0096

1

1 Introduction

Organizations are required to face the continuously changing market

requirements and need to be supported by the underlying software. The process

of software development and maintenance require agile methods to fulfil the ever-

growing needs of the changing market and at the same time, meet the

characteristics of the software quality.

Since the birth of Agile Manifesto in 2001, Agile methodology has become

increasingly popular over years. Agile implementations have brought in

tremendous value to the customers such as high degree of collaboration between

customer and project teams, transparency, focus on business value, allowance for

frequent changes, early predictable delivery etc.

Over a period of time, a large number of frameworks have evolved around Agile

Principles and Values. Also, while Agile methodologies revolve primarily around

project execution, there are related software engineering processes such as

Planning, Estimation, Budgeting etc. which need newer line of thinking and a

level playing field among all stakeholders. Also, there are core engineering

processes such as Software Architecture which also need more attention, given

the nature of constantly changing Agile Requirements.

Various countries have taken steps to come up with guidance on different aspects

of Agile implementations.

1.1 Why Agile?

All software systems have a lifecycle, irrespective of whether it is established formally or not.

A lifecycle is a set of distinguishable phases or stages that the software goes through from its

conceptualization until it ceases to exist. Lifecycle models are often considered as a framework

of processes and activities that serve as the baseline for understanding and communicating

about the software system. Software systems typically passes through its lifecycle as the result

of tasks being performed by organizations and people, by instantiating a framework of

processes and activities for their respective contexts. IS 16124 : 2020 (Identical to

This action research explores the international standards and literatures available

around various Software Lifecycle Processes and provides a brief guideline on how

Standardizing Core Agile Practices will be useful for Software and IT Industry.

Project No: AR/0096

2

ISO/IEC/IEEE 12207 : 2017) standard provides requirements related to a common process

framework for describing the life cycle of software systems. These processes can be used by

any organization to construct life cycle models for their product and service offerings.

The Agile way of software development has become a necessity due to ever changing nature

of business requirements that defines the software. The Agile Manifesto and related values and

principles have served as reference for agile practices across many organizations. However,

there is no uniform adoption of agile practices in the industry. Different organizations exhibit

different levels of maturity and diverse ways of interpreting, adopting and implementing these

practices. The Agile practices offers a lightweight, adaptive, and collaborative development

approach based on empiricism with the focus on rapid business value delivery.

2 Scope of work

 Study existing literature on Agile Practices, standards on Life Cycle Processes for

existing models in Software Developments

 Identify the core practices involved in the agile methodology of IT related

processes.

 Develop a brief guideline for implementing Agile in an organization

3 Methodology used in the work

 Studied the existing literature in the area of agile practices like ScRUM, Norwegian

Standards etc.

 Held number of discussions with domain experts in the area through virtual

meetings

 The discussions and literature study provided a better understanding of the common

concepts in the area of systems (software) processes.

 Categorization of Agile Practices.

 Identifying Core Agile Practices which will be helpful for the industry.

 Identifying key aspects of Agile implementation in business scenarios

 Necessary recommendations for implementing the agile practices

 Based on the above findings, a recommended template for drafting standards on

core agile practices was prepared.

4 References

 IS 16124 : 2020 /ISO/IEC/IEEE 12207 : 2017 Systems and software engineering —

Software life cycle processes

 ISO/IEC/IEEE 24765 : 2017 Systems and software engineering — Vocabulary

 ISO/IEC/IEEE 26515 : 2018 Systems and software engineering — Developing

information for users in an agile environment

Project No: AR/0096

3

 Collaborative Enterprise Architecture: Enriching EA with Lean, Agile, and Enterprise

2.0 practices” by Bente Stefan, Bombosch Uwe, Langade Shailendra (2012)

5 Summary Literature reviewed
As part of the action research, the following international standards were reviewed to

understand the way each of the standards defines and describes reference architecture in the

subject area:

a) IS 16124 : 2020 Systems and software engineering — Software life cycle processes

b) ISO/IEC/IEEE 26515:2018 Systems and Software engineering — Developing

information for users in an agile environment

c) ISO/IEC TR 29119-6:2021 Software and systems engineering — Software Testing —

Part 6: guidelines for the use of ISO/IEC/IEEE 29119 (all parts) in agile projects

6 Agile Practices – an Overview

The term Agile was coined in the Agile Manifesto (Beck et al., 2001). This set of four values

and twelve principles was formulated to replace the inflexible and heavy-weight waterfall

model for software development with a more lightweight, efficient and human-centric

approach.

The four values of the Agile Manifesto are stated as:

 Individuals and interactions over processes and tools

 Working software over comprehensive documentation

 Customer collaboration over contract negotiation

 Responding to change over following a plan

The twelve principles of the Agile Manifesto outline ways to implement the four key values.

There is no such thing as the Agile practices, although many practices ascribe to Agile – Scrum,

XP, Feature-Driven-Development, and so on. The Agile Manifesto simply expresses their

essence in four key values and twelve principles.

There are certain common characteristics across all Agile flavors:

1. Iterative, Time-boxed Approach: Software is developed in cycles of a fixed length

duration, most often, between two and four weeks long. Goal of an iteration is to deliver

a feature that is completely “done” i.e. a piece of software is fully tested and can be

deployed. An iteration is never prolonged.

2. Working Software: The short development cycles are accompanied by strict

governance on quality. Working Software implies keeping the system always in a

deployable state. Therefore, daily build, test automation and continuous integration are

central concepts in Agile projects. The ultimate goal is to have the software in a fully

deployable state after each iteration. Furthermore, a feature is complete if it has fully

https://www.iso.org/en/contents/data/standard/07/08/70880.html
https://www.iso.org/en/contents/data/standard/07/08/70880.html
https://www.iso.org/en/contents/data/standard/08/12/81293.html
https://www.iso.org/en/contents/data/standard/08/12/81293.html

Project No: AR/0096

4

satisfied its “definition-of-done” and is available to the customer for demo (having

visual results) at the end of the iteration.

3. Welcoming Change: The iterative approach helps in shaping the users and

stakeholders’ requirements over time. A customer representative is present at regular

Agile meetings. It helps in seeking customer input for each iteration planning. It is also

a way to respond to the accelerated changes in the business and technology environment

and reprioritize development activities. This enables development projects with a time

horizon of two or three years to catch up with these changes along the way at much

shorter time intervals.

4. Self-organized Teams: An Agile project must always be executed by a cross-

functional and self-organized team. The team takes common responsibility for

delivering the software on promise. Each team member must fulfill this responsibility

in an end-to-end fashion. The team organization is flat. There are only two predefined,

exposed roles: a) The scrum master, responsible for moderating (not managing!) the

team and protecting it from outside disturbances; b) The product owner, acting as a

representative of the project customer. The specialist roles like an architect are subject

to some debate in the Agile community.

5. Customer Collaboration: Agile favors direct communication over written documents.

Flat organization, mutual respect, open communication characterizes Agile teams. This

is more natural as humans communicate most effectively and efficiently when coming

together in a trustful atmosphere, and expressing their insights and opinions – not only

through words, symbols and drawings, but also through gesture, facial expression and

voice modulation. The customer plays a critical role in the success of the project, more

specifically, due to his continuous engagement for a) providing insight and input in

backlog prioritization and iteration planning; b) reviewing customer demo and its visual

results at the end of each iteration; c) providing overall user feedback and advice

6.1 Lifecycle processes

Every software product or service has a lifecycle IS 16124 : 2020 (Identical to ISO/IEC/IEEE

12207 : 2017) describes this life-cycle as an abstract functional model that represents the

conceptualization of the needs, realization by addressing the needs, subsequent utilization after

realization, evolution based on change in environment or evolving needs and retiring or

disposing the software product or service at the end of its useful life. IS 16124 : 2020 proposes

4 interacting process groups :

a) Agreement processes,

b) Organizational project-enabling processes

c) Technical management processes

d) Technical processes,

covering the activities that are typically performed during the software systems lifecycle.

The agreement processes aid organizations to agree on the responsibilities of the different

functions related to software during its conceptualization, realization, utilization, evolution and

subsequent disposal. The organizational project-enabling processes enable an organization to

acquire and supply software through the initiation, support and control of projects. The

technical management processes aid organizations to manage resources and assets provided by

Project No: AR/0096

5

the organization to meet the agreements and other organizational commitments. The technical

processes aid organizations to understand requirements, transform them into appropriate

software products or services, reproduce software as and when needed, utilize the software in

different environments, sustain the software till they are decommissioned, and retire or dispose

the software at the end of its useful life.

6.2 Agile in a Project Context
Figure 1 positions Agile Development within the context of an end-to-end project lifecycle. This

is how IT folks (i.e. the supplier or service provider) would look at Agile Development from an

IT delivery perspective.

Figure 1 Agile in a Project Context

7 Areas for Standardization

Agile Manifesto, which a set of four values and twelve principles, is the foundation for Agile

Development. Many different methods and techniques help in practicing the values and

principles set forth by Agile Manifesto, but there is no such thing as Agile practice or Agile

methodology.

In Agile literature till date, there are a number of terms, concepts, techniques, methods and

artefacts which are being used, referred and found relevant. Nonetheless, the interpretations

thereof are still broad and generic. The following sections highlight some of such areas which

are worth considering for standardization.

Project No: AR/0096

6

7.1 Agile Glossary of Terms

A number of terms are being used in Agile with or without a formal definition or notion. It is

largely left to individual interpretation as to what they mean. For example, Continuous

Integration, Epic, Minimum Viable Product and so on.

It therefore becomes necessary to establish and expand the Glossary of Terms used in Agile

Environment. It may further become essential to supplement certain terms with a few

illustrative examples.

7.2 Key Artifacts

A number of artifacts are used in Agile Environment, however there is no mention as to what

the content should be, how the content should be structured, what meta-data about the artefact

should be captured, and how the lifecycle of an artefact be managed. A few illustrative

examples of artefacts which are largely vague are as follows:

1. Business Case: what a business case should contain, in what format and at what degree

of details; how to make it lightweight; who prepares it; who consumes it; how it will

help in product/project evaluation, budgeting, pricing, costing, and other related

downstream activities.

2. Product Vision: what is the purpose of this artefact, who should prepare it, who should

use it and for what reason, what it should contain and in which structure or format,

what constitutes a good product vison.

3. Product Backlog: how the backlog can be split, decomposed, merged and

synchronized at different stages of development cycle e.g. product backlog vis-à-vis

release backlog vis-à-vis sprint backlog; how each of the backlogs be characterized in

terms of content, content type, ownership for e.g. Epic, Feature, User Story, Task; how

different backlogs should be mapped or linked together.

4. Product Non-Functional Requirements: how the NFR for the product be defined; At

what different levels of architecture the NFR can be imposed, for e.g. product-level,

component-level, function-level, task-level.

5. User Stories: how the user-stories should be organized in the backlog and at what

levels of granularity (e.g. Epic, Feature, User Story, Task), what meta-data about the

user-stories be maintained; how the user stories be categorized, how user stories are

detailed from a high-level abstract description to a precise implementable description

of the requirement. How the conditions of satisfaction and definition of done for user

storied be maintained in the backlog, how the lifecycle of user stories be managed

within the product backlog.

6. Contract: what different types of contracts are relevant in Agile Environment; when

to use what kind of contract; what an agile contract should contain; who should

negotiate the contract and who should sign it (i.e. the roles accountable for contract

execution); how the risks are balanced between the customer and the supplier; standard

and specific terms and conditions in an Agile contract

Project No: AR/0096

7

7.3 Methods and Techniques

A number of methods and techniques are being used to address specific concerns in Agile

Environment. There is however not much guidance or formalization to help in bringing

consistency in practicing them. These methods and techniques are candidates for

standardization:

1. Estimation: In Agile, estimation is done primarily on the basis of user story or size of

the user story – story points. There are a few popular estimation methods such as T-

Shirt Sizing, Planning Poker and Affinity Diagram. For a longer-term, the estimation is

ball-park (e.g. T-Shirt Size) whereas for a near-term, it is more precise (in story points).

It is necessary to formalize which method of estimation should be used at what stage of

the development, and how. It is also important to understand the degree of variance

achievable and acceptable at each stage of the development.

2. Budgeting: In contrast to traditional software development, Agile takes a different view

on Budgeting. It assumes schedule and budget to be fixed upfront while leaving the

scope of the deliverable changing. It therefore becomes necessary to allow the Agile

teams to flexibly consume the allocated budget in an attempt to maximize the value

delivered. It is somewhat hard for traditional organizations to allocate the budget

without clear commitment requirements to be implemented and/or activities to be

performed.

3. Architecture Development: Agile is averse to upfront architecture development

exercise and presumes that the architecture shall evolve during the development – code

is the architecture. The idea of emergent architecture is not scalable and often fails in

large projects. It therefore becomes necessary to formalize what initial architecture

should be in place, when it can be changed and how it will evolve over time without

impacting the already released software much.

4. Continuous Prioritization: The work to be done – the user stories, the tasks – is

continuously reprioritized to better align with the user expectations and to maximize

business value for the customer. The prioritization can be for a list of projects or for the

work-items in a backlog. It is necessary to formalize the periodicity of prioritization;

the basis for prioritization; the stakeholders who will participate in prioritization; the

methods and techniques to be used for prioritization; overall governance for

effectiveness of prioritization on the achievement of strategic goals and benefits.

5. Continuous Integration: An Agile project should maximize automation to accelerate

development process. In particular, continuous integration implies a tool-supported

automation of software build and test execution, which is repeated in continuous loops.

This way, code that causes compilation errors or test failures, is noticed with only a

minimal delay after checking it into the source code management system. The methods,

techniques and technologies available for continuous integration, test automation,

release automation and DevOps in general need some degree of technology-agnostic

formalization.

6. Contracting: The process of contracting between the customer and supplier should be

tailored and formalized to effectively work in Agile Environment. The risks should be

mitigated at the best or well-balanced between the customer and the supplier at the least.

Project No: AR/0096

8

The processes followed, the stakeholder involved, the terms and conditions need to be

standardized based on the type of project work being contracted out. This is especially

tricky in Agile Environment for the lack of upfront clarity about the scope, the

requirements and the acceptance criteria for the contracted project work.

7. Benefit Quantification and Governance: There is a need for strategic governance in

Agile software development. It implies an ongoing monitoring and control of Agile

projects and programs on four dimensions: a) solution maturity (architectural

excellence), b) delivery assurance (process excellence), c) organizational readiness

(people excellence), and d) business value creation (business excellence)

8. Scaling Agile: While Agile methods and techniques work pretty well in small setup

such as innovation labs, and startup companies, managing Agile at a scale is always a

challenge. Many different approaches are suggested for scaling Agile projects like

scrum of scrums. It is necessary to study different scaling options and assessing them

for operational feasibility, management overhead, cultural conflict, geographic spread,

and so on. Based on the study, optimal models for Scaling Agile can be provided.

8 Proposed structure for standards

describing Core Agile Practices
1. Foreword

2. Overview

3. Need for the standard

4. Purpose

5. Scope

6. References

7. Terminology

8. Conceptual foundations

a) Lifecycle processes

b) Agile practices

c) Criteria for practices

d) Description of practices

9. Agile practices

a) Practices under agreement processes

b) Practices under organizational project-enabling processes

c) Practices under technical management processes

d) Practices under technical processes

