भारतीय मानक Indian Standard

रबड़ कन्वेयर और एलीवेटर टेक्सटाइल बेल्टिंग — विशिष्टि

IS 1891 (Part 2): 2024

भाग 2 ऊष्मा प्रतिरोधी बेल्टिंग

(चौथा पुनरीक्षण)

Rubber Conveyor and Elevator Textile Belting — Specification

Part 2 Heat Resistant Belting

(Fourth Revision)

ICS 53.040.20

© BIS 2024

भारतीय मानक ब्यूरो

BUREAU OF INDIAN STANDARDS मानक भवन, 9 बहादुर शाह ज़फर मार्ग, नई दिल्ली - 110002 MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG NEW DELHI - 110002

www.bis.gov.in www.standardsbis.in

December 2024

Price Group 5

FOREWORD

This Indian Standard (Fourth Revision) was adopted by the Bureau of Indian Standards after the draft finalized by the Conveyor Belts Sectional Committee had been approved by the Production and General Engineering Division Council.

This Indian Standard was first published in 1972 and was subsequently revised in 1978, 1988 and 1993.

This revision has been brought out to take care of the experience gained since the last publication and to bring it in line with the current manufacturing practices vis-à-vis latest technological advancements. SI systems of units have been followed in the standard.

This standard is published in five parts. The other parts in this series are:

Part 1 General purpose belting
Part 3 Oil resistant belting
Part 4 Hygienic belting

Part 5 Fire resistant belting for surface application

The major modifications in this standard are:

- a) Introduction to various types of heat-resistant belting used in food industry along with relevant tests applicable to them have been included;
- b) Some new tests like fire resistance, electrical surface resistance test (antistatic test), volume swelling, heat resistance, non-stick test and tear resistance test have been added; and
- c) Method of testing tear strength test has also been provided.

The composition of the Committee, responsible for the formulation of this standard is given in Annex B.

For the purpose of deciding whether a particular requirement of this standard is complied with the final value, observed or calculated, expressing the result of a test or analysis shall be rounded off in accordance with IS 2:2022 'Rules for rounding off numerical values (second revision).

Indian Standard

RUBBER CONVEYOR AND ELEVATOR TEXTILE BELTING — SPECIFICATION

PART 2 HEAT RESISTANT BELTING

(Fourth Revision)

1 SCOPE

This Indian Standard (Part 2) specifies the requirements of conveyor and elevator textile belting for use on flat or troughed idlers for conveying hot materials which are classified as follows given in Table 1.

These classes do not correspond to the temperature of the transported product, they are generally lower to account for. Depending on the use for which the belt is intended, the manufacturer should state the class to be used for assessing compliance with this Indian Standard. For higher than the above specified material temperature, user may consult the manufacturer for an alternative grade and should agree on alternate temperature of ageing and /or duration.

2 REFERENCES

The standards listed in <u>Annex A</u> contain provisions, which through reference in this text, constitute provisions of this standard. At the time of publication, the editions indicated were valid. All standards are subject to revision and encouraged to investigate the possibility of applying the most recent edition of these standards.

3 PERFORMANCE REQUIREMENTS

When tested under the method specified as per given in 4, the permissible variations in hardness, elongation at break and tensile strength shall be Table 2.

4 TEST METHODS

4.1 Principle

The following properties are measured, before and after exposure to heat according to **4.3.1**:

- a) The hardness of covers as per IS 3400 (Part 2/Sec 1);
- b) Elongation at break of covers as per IS 3400 (Part 1); and
- c) Tensile strength of covers as per IS 3400 (Part 1).

NOTE — The temperatures selected for the tests are usually not those corresponding to the temperature of the product to be transported; they are generally lower to take account of:

- 1) the possibility of the conveyor belt cooling, and
- the fact that contact between the product and the conveyor belt will not equalize the temperature.

Table 1 Resistance to Temperature °C (Max)

(*Clause* <u>1</u>)

Sl No.	Heat Resistance Grades	Guideline — Material Temperature Predominantly Lumps	Guideline — Material Temperature Predominantly Fines	
(1)	(2)	(3)	(4)	
i)	Heat Resistance Grade T ₁ (HR T ₁)	125	100	
ii)	Heat Resistance Grade T ₂ (HR T ₂)	150	125	
iii)	Heat Resistance Grade T ₃ (HR T ₃)	180	150	

Table 2 Permissible Variations

(Clauses $\underline{3}$ and $\underline{4.2}$)

Sl No.	Cov	er Characteristic	Variation for Belt Class						
			HR T ₁		HR T ₂		HR T ₃		
(1)		(2)	(3)		(4)		(5)		
i)	Hardne	ess (IRHD)							
	a)	variation of initial value; and	+ 20	+ 20		+ 20		+ 20	
	b)	maximum value	85		85		85		
ii)	Elongation at break (percent)								
	a)	variation in percentage of initial value; and	- 50		- 50		- 55		
	b)	minimum value	200		200		180		
iii)	Tensile strength (N/mm²)			1					
	a)	variation in percentage of initial value; and	- 25 12		- 30		- 40		
	b)	minimum value			10		5		
iv)	Adhesio	on strength (N/mm)	Natural Fibers Carcass	Synthetic Filaments Carcass	Natural Fibers Carcass	Synthetic Filaments Carcass		Synthetic Filaments Carcass	
v)	Betwee	n adjacent piles		1	1				
	a)	variation in percentage of initial value; and	-50	-50	-50	-50	-50	-50	
	b)	minimum value	1.6	3.0	1.6	3.0	1.6	3.0	
vi)		o ply Adhesion n to 1.5 mm)							
	a)	variation in percentage of initial value; and	-50	-50	-50	-50	-50	-50	
	b)	minimum value	1.05	1.6	1.05	1.6	1.05	1.6	
vii)		o ply Adhesion n to 1.5 mm)		1					
	a)	variation in percentage of initial value; and	-50	-50	-50	-50	-50	-50	
	b)	minimum value	1.35	2.25	1.35	2.25	1.35	2.25	

NOTE — Actual application condition may not match exactly within the frame of the standard, hence, the above acceptance parameters are for guidance only. End use and manufacture of the conveyor belt may decide on specific acceptance based on past performance and accuracy of application conditions.

4.2 Classification

Conveyor belts shall be classified as presented in $\underline{1}$ and $\underline{\text{Table 2}}$.

4.2.1 Exposure to Heat

Cut a sample belt of full thickness measuring $400~\text{mm} \times 400~\text{mm}$ from the centre of the belt at a distance of at least 100~mm from the edges. Place it in an air oven following IS 3400~(Part 4) for 72~h at a temperature of 100~°C for HR T_1 belts, 125~°C for HR T_2 belts and 150~°C for HR T_3 belts.

After exposure to heat, remove the belt sample from the oven and leave it to cool.

4.2.2 Preparation of Test Pieces for Evaluating Properties

4.2.2.1 Test pieces for measuring the hardness of covers

The test pieces shall either be the belt sample itself or covers removed from the belt by cutting away the covers from the belt sample. Test pieces shall be lightly buffed on each surface but left at maximum thickness. Condition the test pieces for 24 h at a temperature of (27 ± 2) °C and relative humidity of (65 ± 5) percent (atmosphere B in accordance with IS 17527)

4.2.2.2 Test pieces for measuring elongation at break and tensile strength

Cut away the covers from the belt samples as described in 4.2.1 and bring them to a thickness of (2 ± 0.2) mm by cutting on both faces and finishing off with a light buffing. Condition the test pieces for 24 h at a temperature of (27 ± 2) °C and relative humidity of (65 ± 5) percent (atmosphere B in accordance with IS 17527).

4.2.2.3 Test pieces for measuring the adhesion strength of the belt

Cut away the adhesion test piece specimen from the belt as per ISO 252. Condition the test pieces for 24 h at a temperature of (27 ± 2) °C and relative humidity of (65 ± 5) percent (atmosphere B in accordance with IS 17527).

4.3 Determination of Properties

4.3.1 Hardness

Using the test pieces prepared as described in 4.2.2.1 measure the hardness of covers using one of the methods specified in IS 3400 (Part 2/Sec 1) according to the available thickness of the rubber material.

4.3.2 Elongation at Break and Tensile Strength

Using the test pieces as described in <u>4.2.2.2</u> measure the elongation at break of covers and tensile strength in accordance with IS 3400 (Part 1).

4.3.3 Adhesion Strength

Using a test piece prepared as described in 4.2.2.3, measure the adhesion strength as described in ISO 252.

4.3.4 Initial Values

Determine the initial values of hardness, elongation at break and tensile strength by measuring these properties using test pieces cut from the same belt and prepared as described in 4.3.2, but without exposure to heat.

4.4 Expression of Results

Record the results for the hardness of covers, the elongation at break of covers and the tensile strength of covers for the samples not exposed to heat and those exposed to heat. Calculate the variation in hardness, and elongation at break and breaking strength between the results obtained for the samples not exposed to heat and those obtained for the samples exposed to heat.

5 TEST REPORT

The test report shall contain the following information:

- a) Identification of the conveyor belt tested;
- b) The belt class as given in 4.2;
- c) The test piece used (see 4.3.2);
- d) The conditions of exposure to heat;
- e) Details of the conditioning used;
- f) The results of the test as described in 4.4; and
- g) Date of the test.

6 PACKING

The belting shall be packed as mutually agreed between the purchaser and the manufacturer.

7 MARKING

- **7.1** The belting shall be marked at intervals of maximum 15 m on the carrying surface as follows:
 - Manufacturer's name and trade-mark, if any;

IS 1891 (Part 2): 2024

- b) Fabric designation, that is, CC (cottoncotton), PP (Polyamide/Polyamide), EP (polyester/polyamide), etc;
- c) Belt type (full thickness breaking strength (N/mm)/No. of plies); and
- d) Last two figures of the year of manufacture.

7.2 BIS Certification Marking

The product(s) conforming to the requirements of this standard may be certified as per the conformity assessment schemes under the provisions of the *Bureau of Indian Standards Act*, 2016 and the Rules and Regulations framed thereunder, and the products may be marked with the Standard Mark.

ANNEX A

(Clause 2)

LIST OF REFERRED STANDARDS

IS No.	Title	IS No.	Title	
IS 1891 (Part 1): 2021	Conveyor and elevator textile belting — Specification:	(Part 4) : 2012	Accelerated ageing and heat resistance (third revision)	
	Part 1 General purpose belting (fifth revision)	IS 17071 : 2019 ISO 252 : 2023	Conveyor belts — Adhesion between	
IS 3400	Methods of test for vulcanized rubber:	150 232 . 2023	constitutive elements — Test methods	
(Part 1): 2021	Tensile stress — Strain properties	IS 17527 : 2021	Conveyor belts — Test atmospheres and	
(Part 2): 2023	Determination of hardness		conditioning periods	
(Sec 2): 2023	Hardness between 10 IRHD and 100 IRHD (fifth revision)			

To access Indian Standards click on the link below:

https://www.services.bis.gov.in/php/BIS 2.0/bisconnect/knowyourstandards/Indian standards/isdetails/

ANNEX B

(<u>Foreword</u>)

COMMITTEE COMPOSITION

Conveyor Belts Sectional Committee, PGD 40

Organization	Representative(s)
National Thermal Power Corporation Limited, Ranchi	SHRI APURBA GHOSH (Chairperson)
Central Mine Planning and Design Institute Ltd, Ranchi	SHRI PARAG MAJUMDAR SHRI P. K. PAUL (<i>Alternate</i>) SHRI AJOY KUMAR SINGH (<i>Convenor</i>)
Directorate General of Mines Safety, Dhanbad	SHRI M. ARUMUGAM
Directorate General of Mines Safety, Dhanbad	SHRI D. B. NAIK SHRI KAUSHIK SENGUPTA (Alternate)
Fenner Conveyor Belting Pvt Ltd, Madurai	SHRI M. VIVEK SHRI SANTOSH N. KOSARKAR (<i>Alternate</i> I) SHRI N. SRIDHAR (<i>Alternate</i> II)
Forech India Ltd, Sonipat	SHRI I. K. BAHL SHRI TIMIR BHATTACHARYYA (<i>Alternate</i>)
Indian Rubber Manufacturers Research Association, Mumbai	DR K. RAJ KUMAR SHRIMATI SUCHISMITA SAHOO (<i>Alternate</i>)
International Conveyors Ltd, Aurangabad	SHRI U. D. DOUND SHRI PINAKI SEN (Alternate I) SHRI SUDEEP SAHA (Alternate II)
J K Fenner India Ltd, Madurai	SHRI S. MAJUMDAR SHRI D. SRINIVASAN (<i>Alternate</i>)
Multiple Fabric Company Ltd, Kolkata	SHRI SHABBIR TOPIWALA SHRI HAMZA TOPIWALA (<i>Alternate</i>)
NTPC Hyderabad, Secunderabad	SHRI VIVEK KUMAR UPADHYAY
NTPC Ltd, New Delhi	SHRI ABHIJIT NAG SHRI VIVEK KUMAR UPADHYAY (<i>Alternate</i>)
Oriental Rubber Industries Pvt Ltd, Pune	SHRI CHINMAY RAY SHRI VIKRAM MAKAR (Alternate)
Phoenix Conveyor Belt India Pvt Ltd, Kolkata	SHRI MAYUKH SAHA SHRI SUBRATA CHAKRABORTY (<i>Alternate</i> I) DR SUGATA CHAKRABORTY (<i>Alternate</i> II)
Scandia Belting Company Pvt Ltd, Kolkata	SHRI G. B. GANGULY SHRI PARTHA SARTHI BISWAS (<i>Alternate</i> I)

SHRI ARSHED HUSSAIN (Alternate II)

IS 1891 (Part 2): 2024

Organization

Representative(s)

In Personal Capacity (A1-201, Doshi Firstnest Apartment, Thirumudivakkam Main Road Thirumudivakkam Chennai-600132) SHRI K. EUGENE PACCELLI

In Personal Capacity (D-1, Kailashpuri Complex, Kusum Vihar. Phase-2, Koylanagar, Dhanbad, Jharkhand)

SHRI K. K. S. SINHA

BIS Directorate General

SHRI R. R. SINGH, SCIENTIST 'F'/SENIOR DIRECTOR AND HEAD (PETROLEUM, COAL AND RELATED PRODUCTS) [REPRESENTING DIRECTOR GENERAL

(Ex-officio)]

Member Secretary
SHRI VICHITRA VIR SINGH
SCIENTIST 'D'/JOINT DIRECTOR
(PETROLEUM, COAL AND RELATED PRODUCTS), BIS

This Page has been literationally left blank

This Page has been literationally left blank

Bureau of Indian Standards

BIS is a statutory institution established under the *Bureau of Indian Standards Act*, 2016 to promote harmonious development of the activities of standardization, marking and quality certification of goods and attending to connected matters in the country.

Copyright

BIS has the copyright of all its publications. No part of these publications may be reproduced in any form without the prior permission in writing of BIS. This does not preclude the free use, in the course of implementing the standard, of necessary details, such as symbols and sizes, type or grade designations. Enquiries relating to copyright be addressed to the Head (Publication & Sales), BIS.

Review of Indian Standards

Amendments are issued to standards as the need arises on the basis of comments. Standards are also reviewed periodically; a standard along with amendments is reaffirmed when such review indicates that no changes are needed; if the review indicates that changes are needed, it is taken up for revision. Users of Indian Standards should ascertain that they are in possession of the latest amendments or edition by referring to the website-www.bis.gov.in or www.standardsbis.in.

This Indian Standard has been developed from Doc No.: PGD 40 (23475).

Amendments Issued Since Publication

Amend No.	Date of Issue	Text Affected	

BUREAU OF INDIAN STANDARDS

Headquarters:

Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi 110002

Telephones: 2323 0131, 2323 3375, 2323 9402 Website: www.bis.gov.in

reception	es. 2323 0131, 2323 3373, 2323 7 1 02	website. www.bis.gov.iii	
Regional	Offices:		Telephones
Central	: 601/A, Konnectus Tower -1, 6 th Floor, DMRC Building, Bhavbhuti Marg, New Delhi 110002	}	Telephones { 2323 7617
Eastern	: 8 th Floor, Plot No 7/7 & 7/8, CP Block, Sector V, Salt Lake, Kolkata, West Bengal 700091	}	2367 0012 2320 9474 265 9930
Northern	: Plot No. 4-A, Sector 27-B, Madhya Marg, Chandigarh 160019		265 9930
Southern	: C.I.T. Campus, IV Cross Road, Taramani, Chennai 600113		2254 1442 2254 1216
Western :	5 th Floor/MTNL CETTM, Technology Street, Hiranandani C Powai, Mumbai 400076	Gardens,	2570 0030 2570 2715

Branches: AHMEDABAD, BENGALURU, BHOPAL, BHUBANESHWAR, CHANDIGARH, CHENNAI, COIMBATORE, DEHRADUN, DELHI, FARIDABAD, GHAZIABAD, GUWAHATI, HARYANA (CHANDIGARH), HUBLI, HYDERABAD, JAIPUR, JAMMU, JAMSHEDPUR, KOCHI, KOLKATA, LUCKNOW, MADURAI, MUMBAI, NAGPUR, NOIDA, PARWANOO, PATNA, PUNE, RAIPUR, RAJKOT, SURAT, VIJAYAWADA.