BUREAU OF INDIAN STANDARDS

DRAFT FOR COMMENTS ONLY

(Not to be reproduced without permission of BIS or used as an Indian Standard)

भारतीय मानक मसौदा बाह्यकोशिकीय पुशिकाएं – लक्षण वर्णन

Draft Indian Standard

Extracellular Vesicles – Characterization

ICS:07.080

Medical Biotechnology and Medical Nanotechnology Last date for Comment: **02 November-2025** Sectional Committee, MHD 20

FOREWORD

(Formal Clause will be added later)

Extracellular vesicles (EVs) are membrane-bound vesicles released by cells that play a key role in intercellular communication by transporting proteins, lipids, and nucleic acids. EVs include exosomes, microvesicles, and apoptotic bodies, each varying in size, biogenesis, and function.

Characterizing EVs is essential for understanding their functions, and molecular cargo, and ensuring their quality for clinical and industrial applications. This process involves analysing their physical, molecular, and functional properties, which provide insights into their identity, biological activity, and therapeutic potential.

Given the diverse applications of EVs, MHD20 has developed this standard to guide characterization for researchers, clinicians, and industry professionals working in EV research, diagnostics, and therapeutics.

The list of Abbreviations are given in Annex A

In the preparation of this standard considerable assistance has been derived from the publications given in Annex B.

For the purpose of deciding whether a particular requirement of this standard is complied with the final value, observed or calculated, expressing the result of a test or analysis shall be rounded off in accordance with IS 2: 2022 'Rules for rounding off numerical values (*second revision*). The number of significant places retained in the rounded-off value should be the same as that of the specified value in this standard.

Indian Standard

EXTRACELLULAR VESICLES - CHARACTERIZATION

1. SCOPE

This standard provides general considerations for the characterization of Extracellular Vesicles (EVs). It serves as a guidance document, outlining various test methods applicable to different use cases. Only those tests that have gained broad consensus for characterization are designated as mandatory, while other recommended methods are left to the user's discretion based on their Intended application.

2. NORMATIVE REFERENCES

Reference No	Title	
IS 18637 (Part 1): 2024	Cleanrooms and associated controlled environments Part 1: Classification of air cleanliness by particle concentration (ISO 14644-1:2015, MOD)	
IS/ISO 29701: 2010	Nanotechnologies - Endotoxin test on nanomaterial samples for in vitro systems - Limulus amebocyte lysate (LAL) test	
IS 18514: 2024/ISO	Particle Size Analysis — Dynamic Light Scattering (DLS)	
22412: 2017		
IS 17932 (Part 1): 2023	Biological evaluation of medical devices Part 1: Evaluation and	
	testing within a risk management process (ISO 10993-1 2018,	
	MOD)	

3 TERMS AND DEFINITIONS

- 3.1 Extracellular Vesicles (EVs): Membrane-bound vesicles released from cells, varying in size (30 nm $10 \mu m$), content, and function, which facilitate intercellular communication.
- 3.2 Exosomes: Small EVs (30 200 nm) of endosomal origin, released through the fusion of multivesicular bodies (MVBs) with the plasma membrane.
- 3.3 Microvesicles (MVs): Larger EVs (100 1000 nm) formed by the outward budding of the plasma membrane.
- 3.4 Apoptotic Bodies: Large vesicles (1 $5 \mu m$) released by cells undergoing apoptosis, containing cellular debris.

3.5 EV Cargo: The molecular content within EVs, including proteins, lipids, RNA (mRNA,

microRNA), and DNA.

3.6 Cellular Debris: Refers to the fragmented remains of cells that result from cellular damage,

death, or disintegration during the culture process.

4 GENERAL CONSIDERATIONS

4.1. Key aspects of aspects of EVs for consideration

As per the Minimal information for studies of extracellular vesicles (MISEV2023): From basic to

advanced approaches published by the International Society for Extracellular Vesicles, the

characterization techniques/ methods should determine the following aspects of EVs.

i.particle size

ii.particle number/ concentration

iii.particle morphology

iv.total protein content

v.total lipids content

vi.total RNA content

vii. protein markers

viii. non-protein markers

ix. EV-associated componen

5 PHYSICAL CHARACTERIZATION OF EVS

5.1. Physical characterization is essential for confirming the identity of EVs and distinguishing them

from other biological components. EVs are highly heterogeneous, with exosomes typically ranging

from 30 – 200 nm in diameter, while MVs and apoptotic bodies fall into different size ranges. By

determining their size, one can differentiate between these subtypes and eliminate contaminants such

as protein aggregates, lipoproteins, or cellular debris that may mimic EVs in size or appearance.

Comprehensive characterization of EVs is necessary to confirm their identity, purity, and functionality.

5.2. Following parameters for physical characterization should be considered and done as per the

indicated test methods.

Sr.	Parameter	Description	Test methods	Additional
No.				Information
1	Particle size	Size range (30–	NTA (Nanoparticle	Identifies EV
	and	200 nm for	Tracking Analysis), DLS	subtypes, checks
	distribution *	exosomes) and	(Dynamic Light	purity, and helps
		uniformity of	Scattering) or other	understand
		particles	validated method	biological function
2	Particle	Number	NTA, RPS (Resistive	Ensures proper
	number/	of	Pulse Sensing) or other	dosing and
	concentration*	particles	validated method	standardization
		per		
		volume		
3	Morphology *	Structure and	TEM, Cryo-EM, AFM or	Confirms vesicle
		integrity	other validated method	structure and rules
		(spherical or		out contaminants
		cup-shaped		
		vesicles with		
		lipid bilayer)		
4	Surface charge	Particle	Zeta Potential Analyzer or	Indicates
	**	stability and	other validated method	stability and
		tendency to		interaction
		aggregate		potential
5	Density **	EV density for	Density Gradient	Helps isolate EVs
		separation and	Ultracentrifugation	from contaminants
		purity	or other validated	
		assessment	method	
6	Refractive	Optical property	Refractive Index	Ensures accuracy
	index **	relevant to	Analysis or other	in optical
		imaging and	validated method	measurement
		sizing		methods (e.g.,
				NTA)
7	Aggregation	Presence of	DLS, TEM or other	Detects
	state **	clumped	validated method	aggregation that
		particles		may affect
				function or data

				accuracy
8	Purity	Co-isolated	TEM, Marker Analysis,	Ensures high-purity
	indicators	impurities	Flow Cytometry or other	EVs for reliable
	**	(lipoproteins,	validated method	research and
		proteins,		therapeutic use
		debris)		
* Ma	ndatory tests			
** ^	dditional informati	us / Ontional tasts		

^{**} Additional informative / Optional tests

Note 1: The techniques listed are not exhaustive; other suitable methods may also be employed to meet the minimum criteria for establishing EV identity, purity, and structural integrity.

Note 2: For the aforementioned tests, equipment, and analyses, relevant BIS/ISO standards should be cross-referenced and followed wherever applicable.

6 MOLECULAR CHARACTERIZATION OF EVS

6.1. Molecular characterization of EVs is a critical step in understanding the biochemical composition of EVs, specifically their proteins, lipids, and nucleic acids. This deeper understanding is vital for confirming EV identity, revealing their functional properties, and ensuring their utility in clinical and research settings. Molecular characterization is essential for distinguishing EVs from contaminants, confirming sample purity, and ensuring safety and efficacy in functional and therapeutic applications. 6.2. By detecting molecular markers such as tetraspanins (e.g., CD63, CD81, CD9) and cytosolic proteins (e.g., TSG101, Alix), one can validate the presence of EVs and exclude impurities like free proteins or lipoproteins. This profiling provides insights into EVs' roles in intercellular communication, disease processes, and biomarker discovery, revealing disease-specific biomolecules for non-invasive diagnostics and personalized medicine. Additionally, it ensures therapeutic EVs carry functional bioactive molecules and remain contaminant-free, supporting clinical translation. Standardized molecular markers enhance reproducibility, while detailed profiling elucidates EV biogenesis, release, and uptake, optimizing research and therapeutic strategies. Following parameters for Molecular characterization should be considered and done as per the recommended test methods.

Sr.	Parameter	Description	Test methods	Additional
No.				Information
1	Total	Quantify total protein in an	Colorimetric,	Useful for
	protein	EV preparation	fluorometric or other	normalization
	content *		validated method	and
				comparing EV
				preparations.
2	Total lipid	Quantify total lipid	Colorimetric,	Useful for
	content *	content in an EV	fluorometric,	normalization
		preparation	chromatography or	and comparing
			other validated	EV
			method	preparations.
3	Total	Quantify total RNA	Capillary	Useful for
	RNA	content in an EV	electrophoresis,	normalization
	content *	preparation	Quant- iT RiboGreen	and comparing
			RNA kit or other	EV
			validated method	preparations.
4	Protein	Detect surface protein	Western Blot,	Confirm EV
	marker	markers like CD63, CD81,	Flow Cytometry	identity and
	S# *	CD9	or other validated	helps classify
			method	EV subtypes
		Detect cytosolic	Western Blot,	Confirm EVs have
		protein markers like	Flow Cytometry	typical internal
		TSG101, Alix, HSP70	or other validated	cargo, ensuring
			method	vesicle integrity
		Detect purity markers like	Western Blot,	Assess sample
		albumin, ApoB, Calnexin.	Flow Cytometry	purity for
			or other validated	reliable
			method	experiments and
				therapeutic use
5	Non-protein	Detect lipids (e.g.,	Mass Spectrometry,	Reflects EV bi-
	markers **	phosphatidylserine),	Raman Spectroscopy	layer integrity and
		glycans, or nucleic acids	or other validated	cytosolic features.

			method	
6	Localizatio	Determine whether EV-	Mild protease/	Helps understand
	n of EV	associated components	nuclease digestion,	EV function,
	Componen	such as proteins, RNAs,	permeabilization	cargo delivery
	ts **	glycans are luminal, membrane-bound or external.	assays, antibody accessibility assays or other validated method	mechanisms, and interaction with recipient cells
7	Protein	Comprehensive	Mass Spectrometry	Identifies EV-
	profiling **	profiling of proteins in	or other validated	specific
		EV preparations	method	proteins; critical
				for functional
				and therapeutic
				studies
8	Lipid	Comprehensive profiling	Mass Spectrometry,	Helps
	profiling	of lipis in EV	Lipidomics, Thin-	understand
	**	preparations	Layer	membrane
			Chromatography	structure and
			(TLC) or other	vesicle stability
			validated method	
9	RNA	Comprehensive	Q-PCR, RNA-Seq or	Reveals
	Profiling **	profiling of RNAs in	other validated method	functional EV
		EV preparations		cargo; useful for
				biomarker
				discovery
10	DNA	Quantify total DNA	qPCR, PicoGreen	Useful for
	content	content and its profiling	assay or other	studying gene
	and/or	in EV preparation	validated method	transfer and
	profiling **	-		identifying DNA-
				based biomarkers
11	Glycans	Comprehensive	Lectin blotting, Mass	Reveals
	profiling **	profiling of glycans in	Spectrometry,	glycosylation
		EV preparations	Chromatography or	patterns that
		• •	other validated	influence EV
			method	targeting,
				··· • · · · · · · · · · · · · · · · · ·

				uptake, and
				immune
				interactions
12	Functional	Specific EV components	Q-PCR,	Key for
	markers**	linked to physiological or	Western	diagnostics,
		pathological state	blotting or	prognosis,
			other validated	and
			method	personalized
	1-1			medicine

^{*} Mandatory tests

Note 1: The techniques listed are not exhaustive; other suitable methods may also be employed to meet the minimum criteria for establishing EV identity, purity, and structural integrity.

Note 2: For the aforementioned tests, equipment, and analyses, relevant BIS/ISO standards should be cross-referenced and followed wherever applicable.

7. FUNCTIONAL CHARACTERIZATION OF EVS

- 7.1. Functional characterization of EVs is essential for understanding their biological roles and therapeutic potential. While physical and molecular characterization focus on their size, structure, and composition, functional characterization evaluates how EVs interact with biological systems, including their effects on cells, tissues, and organs. This process is vital for identifying EVs' roles in health, disease, and their potential therapeutic applications.
- 7.2. EVs facilitate intercellular communication by carrying proteins, lipids, and RNAs that influence cellular processes. Studying these interactions reveals EV involvement in immune regulation, tissue repair, and disease mechanisms such as cancer and viral infections. Functional characterization helps explore how EVs mediate these processes, guiding the development of EV-based therapies.
- 7.3. Functional characterization is key for optimizing EV isolation techniques and improving therapeutic strategies. By assessing the biological activity of isolated EVs, researchers can identify the most effective methods for obtaining high-quality EVs with specific properties. Engineering EVs to target particular cells or deliver therapeutic cargo enhances their therapeutic potential, making them promising candidates for drug delivery systems, especially for diseases like cancer, neurodegenerative disorders, and autoimmune conditions.
- 7.4. The following parameters for functional characterization should be considered and assessed using

^{**} Additional informative / Optional tests

^{*}Follow the five-component framework as per MISEV2023 for reporting claims about EV protein content.

the indicated test methods, depending on the designated purpose of the study. These tests are not mandatory, and additional evaluations may be performed based on the specific end-use applications of the EVs.

Sr. No.	Parameter	Description	Test Methods	Additional Information
1	Cellular uptake	Evaluation of how	Flow cytometry,	Indicates delivery
		EVs are	confocal microscopy	efficiency; essential for
		internalized by	or other validated	therapeutic applications
		target cells	method	
2	Targeting	Assessment of	Flow cytometry,	Shows precision of EV
	efficiency	EVs' ability to bind	confocal microscopy	delivery; important for
		specifically to	or other validated	targeted therapies
		target cells	method	
3	Cargo delivery	Ability of EVs to	Flow cytometry,	Confirms functional
		deliver proteins,	confocal microscopy	delivery of therapeutic
		RNA, or other	or other validated	cargo
		molecules to cells	method	
4	Immune	Evaluation of EVs'	ELISA, Flow	Helps design EVs for
	modulation	effects on immune	Cytometry, Cytokine	immunotherapy and
		cells	Assays or other	reduce immune-related
			validated method	side effects
5	Tumorigenesis &	Studying EVs' role	In vivo Tumor	Supports cancer
	metastasis	in cancer	Models, Migration &	diagnostics and
		progression and	Invasion Assays or	development of anti-
		tumor environment	other validated	cancer strategies
			method	
6	Gene expression	Analysis of EV-	RT-qPCR, RNA-Seq	Key for evaluating EVs
	modulation	induced changes in	or other validated	in gene regulation and
		gene expression	method	therapeutic modulation

7	Angiogenesis	Assessment of EV	Tube Formation	Important for
		influence on new	Assay, In vivo	regenerative medicine
		blood vessel	Angiogenesis Models	and cancer research
		formation	or other validated	
			method	
8	Cell proliferation	Effects of EVs on	MTT Assay, BrdU	Helps assess impact on
	& survival	cell growth and	Assay, Live/Dead	cell health, relevant for
		viability	Assay or other	therapy development
			validated method	
9	Regeneration	Studying EVs'	In vitro or in vivo	Critical for therapeutic
		ability to support	regenerative models	applications in
		tissue regeneration		regenerative medicine
10	Endotoxin testing	Detection of	LAL Assay or other	Ensures safety and
		bacterial	validated method	biocompatibility for
		endotoxins (LPS) in		clinical or therapeutic
		EV samples		use
11	Toxicity &	Assessment of	Cytotoxicity Assays,	Confirms safety of EVs
	immunogenicity	harmful effects or	Flow Cytometry,	for in vivo or clinical
		immune response	ELISA or other	applications
		caused by EVs	validated method	

Note 1: The techniques listed are not exhaustive; other suitable methods may also be employed to meet the minimum criteria for establishing EV identity, purity, and structural integrity.

Note 2: For the aforementioned tests, equipment, and analyses, relevant BIS/ISO standards should be cross-referenced and followed wherever applicable.

8. RECOMMENDED ENVIRONMENTAL CONTROLS FOR EV CHARACTERIZATION FACILITIES

- 8.1. GMP-integrated characterization for therapeutic purposes: When EVs are developed for clinical-grade or therapeutic use, environmental controls become critical—especially during in-line quality control and quality assurance (QC/QA) testing. In such cases, characterization steps like sterility testing, endotoxin assessment, and potency assays must be conducted in cleanroom environments compliant with IS 18637 (Part 1): 2024, typically ranging from *Class 5 to Class 8*, depending on the nature of the test.
- 8.2. Routine research and non-clinical characterization: For exploratory research, academic investigations, and routine EV testing that are not directly tied to GMP workflows, a *controlled laboratory environment* is generally sufficient. A *controlled lab* refers to a dedicated space where parameters like temperature, humidity, and access are regulated to support experimental consistency. While strict particle filtration and classification are not mandatory in such settings, adopting basic contamination control practices enhances reproducibility and data quality.
- 8.3. Where applicable, laboratories involved in EV characterization should aim to comply with *ISO/IEC 17025:2017* to ensure technical competence, method validation, and the reliable generation of consistent results.

9. DOCUMENTATION

- 9.1. Records of characterization helps in assessing the results and will help in assessing the unintended pitfall in QC/QA. The documentation of EV characterization serves as a vital tool for ensuring the safety, efficacy, and reproducibility of EV preparations. By documenting critical quality attributes and other essential data, stakeholders across various fields—ranging from basic research to clinical application—can ensure that EVs meet the required standards for their intended use.
- 9.2. The following shall be considered for documentation:
- 9.2.1. *Standard operating procedures:* detailed methodologies followed for characterizing various aspects of EVs, including size, morphology, and content.
- 9.2.2. *Instrument calibration and maintenance records:* ensure to keep calibration, maintenance and performance validation records of all characterization instruments used in the EVs characterization.
- 9.2.3. *Characterization data sheets:* Records particle concentration, size distribution, morphology, and molecular content.
- 9.2.4. *Quality control records:* Tracks internal quality assessments, deviations, and corrective actions.
- 9.3. All measurements should be conducted with appropriate controls, including reference EV standards where applicable. The experimental details, including instrument settings, calibration, and normalization methods, must be documented and reported. EV isolation and purification methods should be specified to contextualize the characterization data. All documents must be periodically reviewed, updated, and maintained as per regulatory and institutional requirements.

ANNEX A (Foreword) LIST OF ABBREVIATIONS

EV Extracellular Vesicle

TEM Transmission Electron Microscopy

Cryo-EM Cryogenic Electron Microscopy

AFM Atomic Force Microscopy

NTA Nanoparticle Tracking Analysis

DLS Dynamic Light Scattering

RPS Resistive Pulse Sensing

QC/QA Quality Control / Quality Assurance

RT-qPCR Reverse Transcription quantitative Polymerase Chain Reaction

RNA-Seq RNA Sequencing

Q-PCR Quantitative Polymerase Chain Reaction

TLC Thin-Layer Chromatography

GMP Good Manufacturing Practice

ELISA Enzyme-Linked Immunosorbent Assay

Annex B

Bibliography

- i. Jeppesen, D. K., Zhang, Q., Franklin, J. L., & Coffey, R. J. (2023). Extracellular vesicles and nanoparticles: emerging complexities. *Trends in Cell Biology*, *33*(8), 667-681.
- ii. Wang, Z., Li, F., Rufo, J., Chen, C., Yang, S., Li, L., ... & Huang, T. J. (2020). Acoustofluidic salivary exosome isolation: a liquid biopsy compatible approach for human papillomavirus associated oropharyngeal cancer detection. *The Journal of Molecular Diagnostics*, 22(1), 50-59.
- iii. Théry, C., Witwer, K. W., Aikawa, E., Alcaraz, M. J., Anderson, J. D., Andriantsitohaina, R., Antoniou, A., Arab, T., Archer, F., Atkin-Smith, G. K., Ayre, D. C., Bach, J. M., Bachurski, D., Baharvand, H., Balaj, L., Baldacchino, S., Bauer, N. N., Baxter, A. A., Bebawy, M., Beckham, C., ... Zuba-Surma, E. K. (2018). Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. *Journal of extracellular vesicles*, 7(1), 1535750. https://doi.org/10.1080/20013078.2018.1535750
- iv. Welsh, J. A., Goberdhan, D. C., O'Driscoll, L., Buzas, E. I., Blenkiron, C., Bussolati, B., ... & Benedikter, B. J. (2024). Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. *Journal of extracellular vesicles*, *13*(2), e12404.