भारतीय मानक मसौदा

स्वचल वाहन - हवा भरे टायरों के लिए वाल्व एवं वाल्व सहायक अंग- विशिष्टि (छठवाँ पुनरीक्षण)

Draft Indian Standard

AUTOMOTIVE VEHICLES - VALVES AND VALVE ACCESSORIES FOR PNEUMATIC TYRES-SPECIFICATION

(Sixth Revision)

ICS: 43.040.60; 83.160

Not to be reproduced without permission of BIS or used as standard

Last date for receipt of comments is 03.02.2024

Automotive Tyres, Tubes and Rims Sectional Committee, TED 7

FOREWORD

(Formal clause to be added later on)

This standard was first published in 1979 and was revised in 1985, 1992, 2001, 2011 and 2017. This revision has been undertaken to update the standard based on industry practices and incorporate latest development in the field. Following are the major changes in this revision:

- a) Tolerance on rubber Base diameter changed to +1/-2;
- b) Truck & Bus valves with base diameter 70 added;
- c) New Truck & Bus valves with base diameter 95 and with 10V2 threads & optional core chamber No.3 regularized;
- d) JS 430, PVR 70, F 35 3 17, TR 416S, TR 416, V3.20 Series, V3.22.1, TR 542 Series, TR 570 Series, TR 618A, V3-18 Series, TR J690 series Valves added;
- e) Modifications in figures and tolerances have also been done in order to align them with the present worldwide practices;
- f) In this revision of standard updated valves with optional Core Chamber No.3 wherever applicable; and
- g) Valve accessories added for standardization.

Valves designation system comprising six character alpha-numeric code derived from their major functional as well as basic dimensional characteristics as per IS 10939 : 2023 'Designation system for tyre tube valves for automotive vehicles (first revision), has been used in this standard.

A list of widely used valves with their valve designation along with TR&A, ETRTO and JATMA valve codes is given in Annex A.

The composition of the committee responsible for formulation of this standard is given in Annex XXX (Will be added later).

For the purpose of deciding whether a particular requirement of this standard is complied with, the final value, observed or calculated expressing the result of a test or analysis, shall be rounded off in accordance with IS 2: 2022 'Rules for rounding off numerical values (second revision)'. The number of significant places retained in the rounded off value should be the same as that of the specified value in this standard.

Draft Indian Standard

AUTOMOTIVE VEHICLES — VALVES AND VALVE ACCESSORIES FOR PNEUMATIC TYRES — SPECIFICATION

(Sixth Revision)

1 SCOPE

This standard specifies the dimensions, materials, tests and acceptance standards for valves and valve accessories for tyre tubes as supplied for application with inner tubes, and valves for use with automotive vehicles including two wheeled vehicles, off-the-road vehicles and animal drawn vehicles. This standard gives those dimensions of commonly used valves which are important for fitment and interchangeability. Although the tests for valve cores have been included, the dimensions for valve core chambers have not been included since the same is covered in IS/ISO 20562 'Tyre Valves-ISO Core Chambers No. 1, No. 2 and No. 3'. Valve caps are also not covered in this standard since these are covered by IS 9453 'Specification for valve caps for tyre tube valves for automotive vehicles.'

2 REFERENCES

The following standards contain provisions which through reference in this text, constitute provisions of this standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this standard are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below:

IS/Other Standards	Title				
IS 319 : 2007	Free cutting leaded brass bars, rods and sections (fifth revision)				
IS 2500 (Part 1): 2000	Sampling inspection procedures: Part 1 Attribute sampling plans indexed by acceptance quality level (AQL) for lot-by-lot inspection (<i>second revision</i>)				
IS 2704 : 1983	Brass wires for cold-headed and machined parts (first revision)				
IS 3168 : 1981	Specification for brass strip and foil for deep drawing (first revision)				
IS 3400 (Part 2): 2014	Methods of test for rubber, vulcanized or thermoplastic Part 2 determination of hardness section 2 hardness between 10 IRHD and 100 IRHD				
IS 4170 : 1967	Specification for brass rods for general engineering purposes Copper and copper alloy forging stock and forging-				
IS 6912 : 2005	Specification (first revision)				
IS/ISO 4570 : 2002 10939 : 2021	Tyre valve threads Designation system for tyre tube valves for automotive vehicles (first revision)				

ISO 14960-Part1: 2014 Tubeless tyres Valves and components Part 1: Test methods

IS/ISO 14960-Part 2: Tubeless tyres - Valves and components: Part 2 clamp - In

2014 tubeless tyre valve - Test method

3 VALVE CLASSIFICATION

3.1 Rubberized Valves

- a) Truck valves;
- b) Passenger car valves;
- c) Motor cycle valves, scooter valves, moped (light duty) valves; and
- d) Off-the-road vehicles (OTR) valves, agricultural tractor (including power tiller) valves and animal drawn slow moving vehicle (ADV) valves.

3.2 Supply Condition of Valves

- a) Unless otherwise specified, valves as per respective designation indicates straight form;
- b) Valve designation with suffix 'SB' indicates 'Single bend' form; and
- c) Valve designation with suffix 'DB' indicates 'Double bend' form.

4 DIMENSIONS AND DESIGN FEATURES

4.1 Dimensional tolerances, in mm (see Fig.1) shall be as follows (unless specified):

Effective length : +1.00 -2.00Rubber base diameter : +1.00-2.00

Rubber base thickness : ± 0.50 Bend height : ± 1.5 Bend length : ± 4.0 Bend angle : $\pm 2^{\circ}$

- **4.2** The basic dimensions of the valves classified in 3.1 shall conform to those in Fig. 2 to *Fig.* 41.
- **4.3** Details of valve threads shall conform to IS/ISO 4570.
- **4.4.** The basic dimensions of the valves accessories shall conform to those in Fig. 42 to Fig. 59.

5 VALVE DESIGNATION

- **5.1** Valves shall be designated in accordance with IS 10939.
- **5.2** Reference may be made to IS 10939 for examples and details for designating widely used valves.

6 REQUIREMENTS FOR RUBBERIZED VALVES

6.1 Material

The metal stems of inserts may be made from brass conforming to IS 319 or IS 2704, IS 4170, IS 6912 or any other suitable brass material. The rubber base shall be butyl rubber / Halo butyl rubber / butyl EPDM and its derivatives and blends. Natural rubber and its derivatives and blends may also be used, if specified by the purchaser.

6.2 Bendability of Valve Stem

6.2.1 Truck valves shall be bendable to 90° and scooter valves to 55° and 90° with the help of the appropriate valve bending tools, without breaking or cracking during bending.

6.3 Hardness

The rubber forming the valve base shall be tested for hardness either by a shore Type A durometer, if practicable or an IRHD Micro-hardness Tester. The hardness shall be between 58 to 73 measured on the shore Type A durometer or on the IRHD Micro-hardness Tester. The testing shall be done in accordance with IS 3400 (Part 2).

6.4 Pull-Out Strength of Rubber Base

Rubber covered valves when tested for stem pull out strength according to **6.4.1**, shall meet the minimum breaking load values specified in **6.4.2**.

6.4.1 Procedure

The rubber base of the valve shall be clamped in a fixture and the cap thread or body thread shall be screwed on the threaded adapter on a suitable tensile testing machine. The hole in the fixture through which the valve comes out shall be 15 mm in diameter for moped valves (*see* Fig 30), 22.2 mm in diameter in case of scooter and motor cycle valves (smaller base diameter) (*see* Figs. 27, 28, 31 and 32) and 31.8 mm diameter for other valves and 38mm for large bore spuds (*see* Fig.35). A direct pull shall be made at the rate of 15.0 cm/min until the rubber base separates from the stem. The minimum pull out values shall determine conformance of the quality to the acceptable standard.

6.4.2 Minimum breaking (Pull out) load values shall be as follows:

Sl. No.	Valve Type	Valve Designation	Minimum Breaking Load (Pull Out Values)
			N
(1)	(2)	(3)	(4)
i)	Scooter valves	A 40 2 45	450
		A 47 2 45	450
ii)	Motor cycle valves	A 29 1 45	450
iii)	Moped valves	A 29 1 32	350

iv)	Passenger car valves	B 35 3 57	450
		B 35 4 57	500
		B 35 5 57	700
		B 49 5 57	700
		B 35 1 57	350
		B 46 3 57	450
		B 57 3 57	450
v)	Agricultural vehicle off-the-	B 20 5 63 / B 20 5 82	900
	road (OTR) vehicle and	B 30 5 63 / B 30 5 82	900
	animal drawn vehicle valves		
vi)	Truck and bus valves	A 65 5 82 / A 65 5 95	1750
(1)	Track and bas varves	A 83 5 82 / A 83 5 95	1750
		A 97 5 82 / A 97 5 95	1750
		A A6 5 82 / A A6 5 95	1750
		A B1 5 82 / A B1 5 95	1750
		A B4 5 82 / A B4 5 95	1750
		A C3 5 82 / A C3 5 95	1750
		A D4 5 82 / A D4 5 95	1750
		A E7 5 82 / A E7 5 95	1750
		A G0 5 82 / A G0 5 95	1750
		A 95 5 95	1750
vii)	Spud for large bore	L 08 6 B4	2000

6.5 Adhesion Test

Adhesion test is conducted to test the bond between metal and rubber. In all cases, adhesion shall be considered to be unacceptable, if the total area of separation between brass and rubber, or brass and cement, or cement and rubber is in excess of 41 mm².

6.5.1 *Method of Checking*

After subjecting the valve to the hot air treatment (*see* **6.5.2**) the rubber cover over the stem or metal insert shall be cut down to the metal face. Each side of the cut rubber base or cover shall be gripped suitably and the rubber pulled away from the metal using pliers. As much rubber as possible, shall be removed from the base of the valve and the sides of the insert and the area of separation for rubber to metal bond shall be examined.

6.5.2 Hot Air Treatment

The valves for the adhesion test (see 6.5) shall be kept in hot air at a temperature of $165 \pm 2^{\circ}$ C for 10 min and allowed to cool down to room temperature before testing for adhesion.

6.6 Buffing

Valves shall be buffed (if required, by the purchaser) on the rubber base side which is to be vulcanized on to tubes. Buffing shall not be too rough or too smooth and the rubber base edge shall have a light feathery finish.

6.7 Workmanship

Valves shall be free from defects like incomplete rubber base, blisters larger than the size of a pin head, incomplete or damaged threads, foreign matter embedded in rubber base and cracks or cuts on rubber base or on the metal stem. The through hole in the valve stem shall be perfectly clear. Bloom shall be avoided to the extent of impairing of adhesion of valve base with the tube.

6.8 Marking

Containers of valves shall be clearly marked with the following:

- a) Valve designation; and
- b) Indication of source of manufacturer or code.

If practicable the above markings may also be carried out on the stem of the valve, or on the rubber with or without equivalent TR Code or ETRTO Code.

6.9 REQUIREMENT FOR TUBELESS VALVES

- a) For test methods of rubber covered tubeless snap in valves, refer ISO 14960 Part 1
- b) For test methods of tubeless clamp-in valves, refer IS/ISO 14960 Part 2

7 VALVE CORE (see Fig. 27)

7.1 Materials

Valve core components may be manufactured from brass conforming to IS 319, IS 2704 or IS 3168 or any other suitable materials. The spring may be made from brass, phosphor bronze or stainless steel wire. The sealing washer material may be synthetic rubber or polymer.

7.2 Valve Core Leakage

Valve cores shall not leak (in excess of one bubble per minute) when tested according to 7.2.1.

7.2.1 The core shall be fitted into a tested valve stem with a torque of 0.23 to 0.56 Nm for core chamber No.1 and 3 and 0.34 to 0.56 Nm for core chamber No.2. Any desired pressure up to 900 kPa shall then be applied from the back of the valve while the tip of the valve is kept immersed in water, mouth downwards.

7.3 Valve Core Interchangeability

Valve core shall be interchangeable. Valve cores shall be made to dimensions such that when installed and properly tightened in valves, the core pin shall not extend above the level of the tip end of the valve by more than 0.25 mm or below the tip end of the valve by more than 0.9 mm.

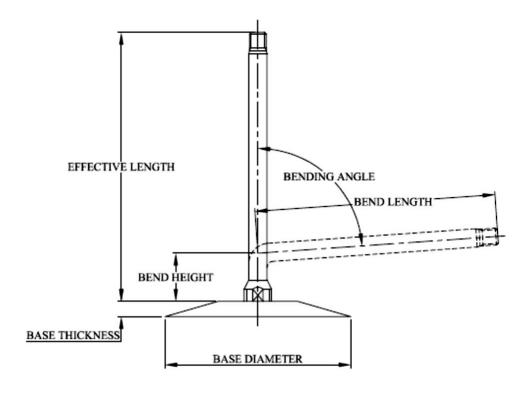
7.4 Acceptable Operating Temperatures

The temperatures range of the valve cores functioning shall be between - 40°C and 100°C.

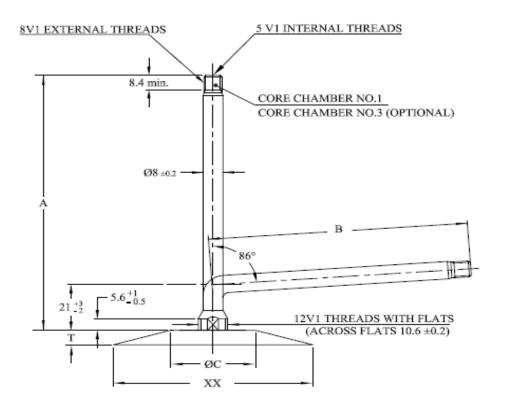
7.5 Marking

The packing / container of the valve core shall be marked with the valve core designation and indication of source of manufacturer or code. Valve Cores may not be marked, if it is not practicable to do so.

7.6 Workmanship


Valve cores shall be free from foreign matter, broken washer, etc. which lead to leakage.

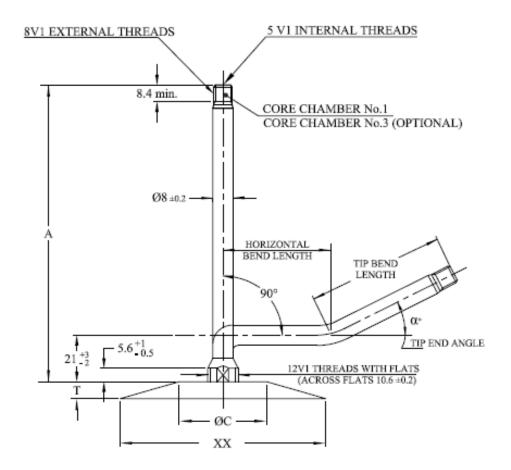
8 QUALITY ASSURANCE PROVISION


- **8.1** Criteria of Conformity and Sampling for Inspection and Tests
- **8.1.1** For the purpose of ascertaining conformity to this standard, the extent of sampling and the criteria of conformity shall be subject to agreement between the purchaser and the manufacturer.
- **8.1.2** Unless otherwise agreed, the manufacturer is responsible for carrying out all inspection and test requirements as specified herein.
- **8.2** Sampling shall be according to IS 2500 (Part 1) and the samples shall be selected as per agreement between the manufacturer and the purchaser.

9 BIS CERTIFICATION MARKING

- **9.1** The product may also be marked with the Standard Mark.
- **9.2** The use of the Standard Mark is governed by the provisions of the *Bureau of Indian Standards Act*, 1986 and the Rules and Regulations made thereunder. The details of conditions under which the licence for the use of the Standard Mark may be granted to manufacturers or producers may be obtained from the Bureau of Indian Standards

All dimensions in milimeters Fig. 1 Dimension Tolerances

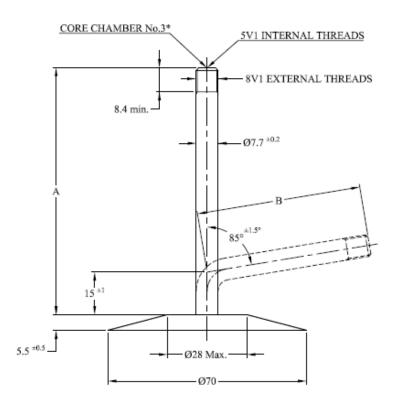


Valve Designation 1)	A	В				
A 65 5 XX	65	48				
A83 5 XX	83	66				
A 97 5 XX	97	80				
A A6 5 XX	106	89				
A B1 5 XX	111	94				
A B4 5 XX	114	97				
A C3 5 XX	123	106				
A D4 5 XX	134	117				
A E7 5 XX	147	130				
A G0 5 XX 160 143						
¹⁾ Designation with suffix 'SB' indicates single						
Bend Valve						

XX: For Valves having base diameter 82, T = 7, $\emptyset C = 28$ max. For Valves having base diameter 85, T = 6.7, $\emptyset C = 20$ max.

XX: i.e., 82 or 95 may be marked either on metal insert or on the rubber has or valve

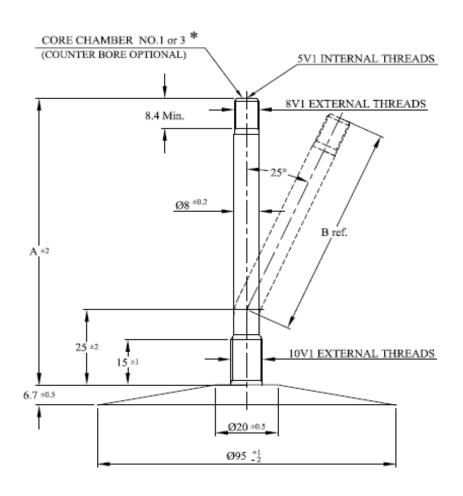
All dimensions in millimeters Fig. 2 Truck and Bus Valves



Valve	Α	Horizontal Bend Length	Tip End Angle	Tip Bend		
Designation ¹⁾			(a°)	Length		
A 97 5 XX	97	35	31°	48		
A A6 5 XX	106	40	31°	51		
A B4 5 XX	114	46	26°	54		
A E7 5 XX	147	63	21°	70		
A G0 5 XX 160 75 21° 70						
1) Designation	1) Designation with suffix 'DB' indicates Double Bend Valve					

XX: For Valves having base diameter 82, T = 7, $\emptyset C = 28$ max. For Valves having base diameter 95, T = 6.7, $\emptyset C = 20$ max.

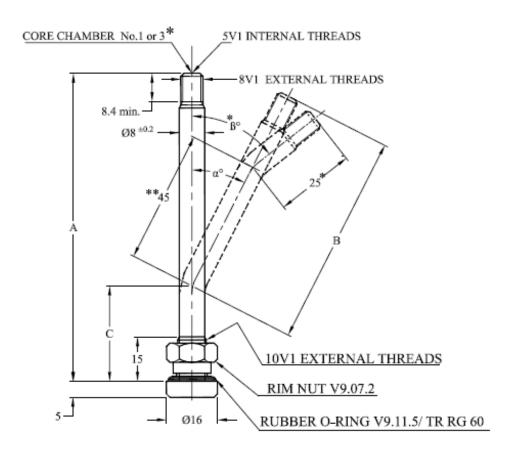
XX i.e., 82 or 95 may be marked either on metal insert or on the rubber base of value


All dimensions in milimeters Fig. 3 Truck and Bus valves

Valve Designation	A	В			
A 85 5 70	85	75			
A A5 5 70	105	95			
A B5 5 70	115	105			
A C5 5 70	125	115			
A E5 5 70	140	130			
A F5 5 70	155	145			
"Designation with suffix 'SB' indicates Single Bend					
Valve					

${\tt NOTE--ACCOMMODATES~SHORT~CORE~ONLY}$

All dimensions in millimeters. FIG. 4 TRUCK AND BUS VALVES

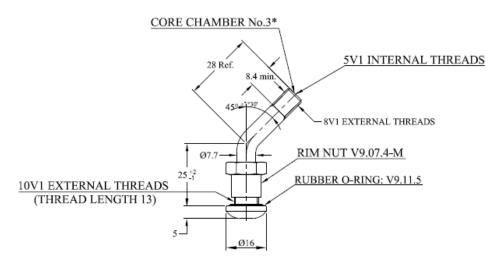


Valve Designation 1)	A	В			
A95 5 95	95	70			
1) Designation with suffix 'SB' indicates Single Bend Valve					

* Accommodates shorts core only Accessories to be used: TR RW8 Ring washer & V9-07-2 Nut

Valve designation may be marked either on metal insert or on the rubber base of value

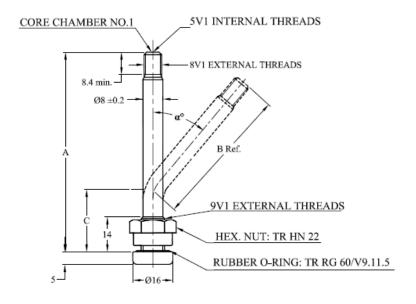
All dimensions in milimeters. FIG. 5 TRUCK AND BUS VALVES


Valve Designation						Valve Hole	Installation
(ETRTO)	Α	$B^{\pm 2}$	C_{-1}^{+2}	$lpha^\circ$	β°	Size in Rim	Torque
V3.20.1	36	ı	-	-	-		
V3.20.2	90	60	30	17°30'	ı		
V3.20.3	82						
V3.20.4	-	60	25	27	ı		
V3.20.5		40	25	27	ı		
V3.20.6		85	25	27	ı	ø9.7 ^{+0.3}	12 - 15 Nm
V3.20.7		50	25	27	ı	Ø9.7 ₀	12 - 13 MIII
V3.20.8		85	29	12	ı		
V3.20.9		52	45	12	ı		
V3.20.10	-	25	50	27	ı		
V3.20.11	95	-	25	27	42		
V3.20.12	-	70	25	27	-		

** FOR V3-20-11 ONLY

ACCOMMODATES SHORT CORE ONLY

All dimensions in millimeters.


FIG. 6 TUBELESS CLAMP-IN TRUCK AND BUS VALVE (O-RING TYPE - ROUND BASE)

Valve	Valve Hole	Installation Torque
Designation	Size in Rim	
(ETRTO)		
V3.22.1	$\emptyset 9.7^{+0.3}_{0}$	12-15 Nm

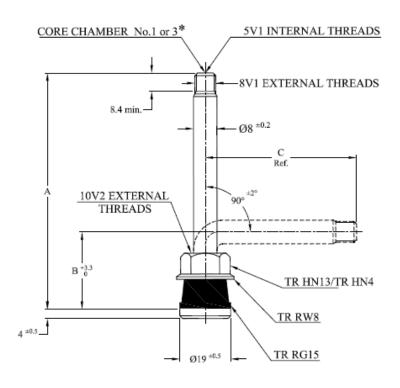
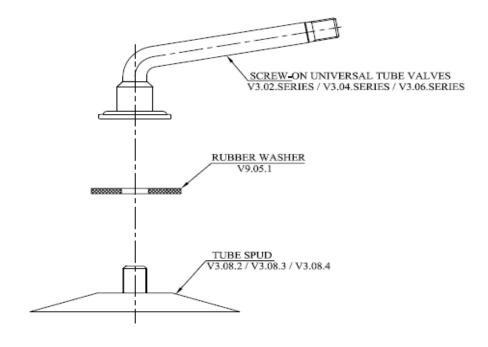
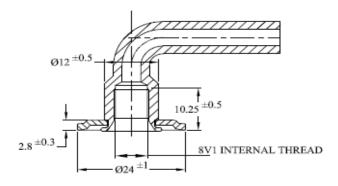

All dimensions in millimetres.

FIG. 7 TUBELESS CLAMP-IN TRUCK AND BUS VALVE (O-RING TYPE - ROUND BASE)

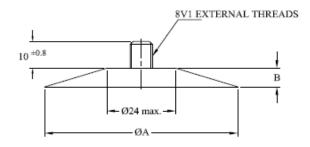

Valve Designation	A	B ± 2	C+2	α° ±2	Valve Hole	Installation Torque
(TR Code)					Size in	
					Rim	
TR 542	32	-	-	-		
TR 543	59	-	1	-		
TR 543C	59	36.5	23.5	45		
TR 543D	59	35	25	60		
TR 543E	59	35	25	75		
TR 544	73	-	-	-		12-15 Nm
TR 544C	73	49	25	45	Ø9.7 ^{+0.3}	
TR 544D	73	49	25	60		
TR 545	89	-	ı	-		
TR 545D	89	66	25	60		
TR 545E	89	66	25	75		
TR 546	108	-	i	-		
TR 546-36	108	85	25	36		
TR 546 D	108	85	25	60		
TR 546E	108	85	25	75		
TR 547 D	119	96	25	60		

All dimensions in millimetres.
FIG. 8 TUBELESS CLAMP-IN TRUCK AND BUS VALVE
(O-RING TYPE - ROUND BASE)



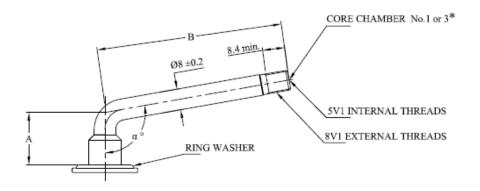
Valve Designation (TR Code)	A	B+3.3	C Ref.	Valve Hole Size in Rim	Installation Torque
TR 575	29	-			-
TR 500	51	-			
TR 501	38	-			
TR 570	80	-			
TR 571	86	-			
TR 572	95	-			4-6 Nm
TR 573	111	-		Ø15 7+0.3	4-0 INIII
TR 574	127	-		$\emptyset 15.7^{+0.3}_{0}$	
TR 570C	-	33	51		
TR 571C	-	33	58		
TR 572C	-	33	67		
TR 573C	-	33	83		

All dimensions in millimetres.
FIG. 9 TUBELESS CLAMP-IN TRUCK AND BUS VALVE
(GORMET TYPE- ROUND BASE)



All dimensions in millimeters. FIG. 10 SCREW-ON UNIVERSAL TUBE VALVES-ASSEMBLY

All dimensions in millimeters.


FIG. 11 SCREW-ON UNIVERSAL TUBE VALVES HEAD SHAPE-TRUCK AND BUS VALVES

Valve Designation	A	В
(ETRTO)		
V3.08.2	70	7
V3.08.3	80	8
V3.08.4	57	5

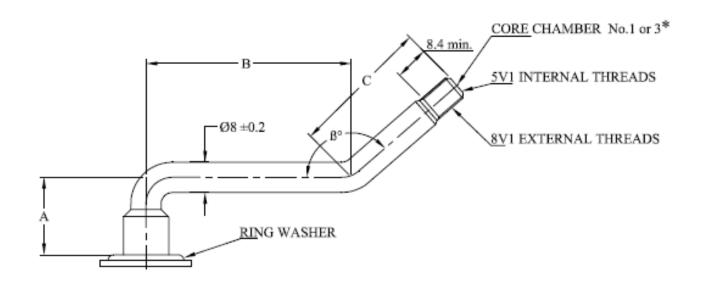
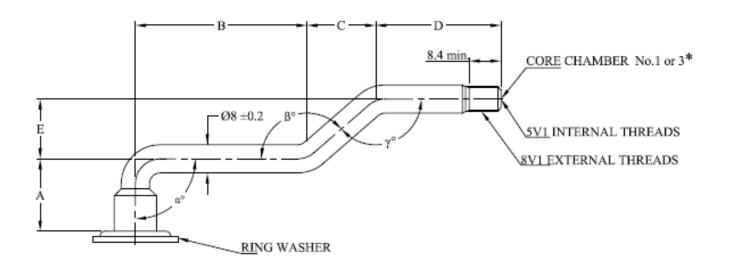

All dimensions in milimeters

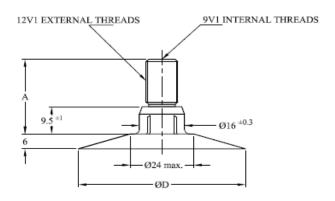
FIG. 12 SCREW-ON UNIVERSAL TUBE VALVE SPUDS TRUCK AND BUS VALVE

Valve Designation (ETRTO)	A	В	α°
V3.02.7	22.5	71.5	100
V3.02.8	20.5	89.5	94
V3.02.9	20.5	99.5	94
V3.02.10	20.5	115	94
V3.02.11	20	126	98
V3.02.12	20.5	132	94
V3.02.14	20.5	138.5	94
V3.02.15	20.5	145.5	94
V3.02.16	20.5	149.5	90
V3.02.18	22.5	74.5	90
V3.02.19	20.5	60	94
V3.02.20	22.5	56.4	95
V3.02.26	20.5	105	94
V3.02.27	20	75	94
V3.02.29	20	127	94


All dimensions in millimetres
FIG. 13 SCREW-ON UNIVERSAL TUBE VALVE SINGLE BENT TRUCK AND BUS
VALVES

Valve Designation (ETRTO)	A	В	С	α°	β°
V3.04.4	20	74	40	94	144
V3.04.5	20	76	47.5	90	153
V3.04.6	20	86	47.5	90	153
V3.04.10	20.5	47	53	90	154
V3.04.11	20.5	47	63.5	90	154
V3.04.15	20.5	42	38.5	90	120
V3.04.21	20	83	57	94	154
V3.04.25	20	80	47	94	164

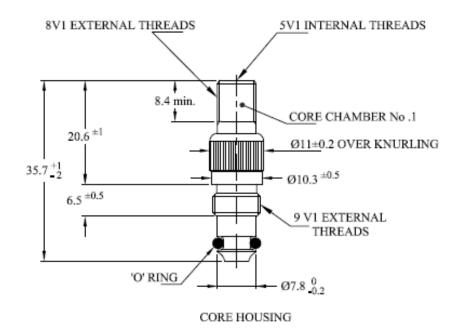
All dimensions in milimeters


FIG. 14 SCREW-ON UNIVERSAL TUBE VALVE DOUBLE BENT TRUCK AND BUS VALVES

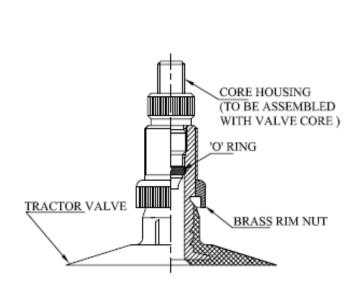
Valve Designation (ETRTO)	A	В	С	D	E	α°	β°	γ°
V3.06.5	20.5	62.5	19.5	49	17	90	139	139
V3.06.6	20	79.5	19.5	37.5	17	90	139	139
V3.06.7	20.5	45.5	18.5	42.5	17	90	137	137
V3.06.8	24.5	61.5	14.5	50.5	7.5	94	153	153
V3.06.9	20.5	67.5	19.5	54.5	17	90	139	139
V3.06.16	20	62	13	50	7	94	153	153
V3.06.17	20	75	13	50	7	94	153	153

All dimensions in milimeters

FIG. 15 SCREW-ON UNIVERSAL TUBE VALVE DOUBLE BENT TRUCK AND BUS VALVES



Valve Designation		A
B 20 5 63	B 20 5 82	20
B 30 5 63	B 30 5 82	30


For Valves B 20 5 63 & B 30 5 63, ØD = 63 For Valves B 20 5 82 & B 30 5 82, ØD = 82

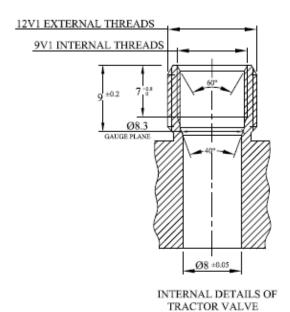
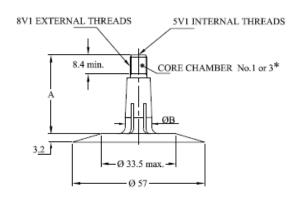
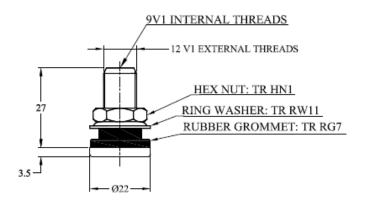

All dimensions in milimeters

Fig. 16 Tractor Valve Air Water Filling Type (See Fig. 18 for Assembly)



All dimensions in milimeters FIG. 17 CORE HOUSING, CH3

All dimensions in milimeters
FIG. 18 TRACTOR VALVE ASSEMBLY


I.		Ø15.5 ±0.5
		Ø11.5 ±0.2
. ↓		
'	A h	
10 ±0.5		
	Ø25.4 ±1	-

Valve Designation	A	B (±0.3)
B 35 3 57	35	11.7
B 35 4 57	35	13.1
B 35 5 57	35	16.5
B 49 5 57	49	16.5
B 35 1 57	35	9.1

NOTE — Plastic bushing to make up for B dimensions of B 35 5 57 valve where necessary, to suit old design rims of 13 to 15 nominal diameter a valve hole of 15.9 mm

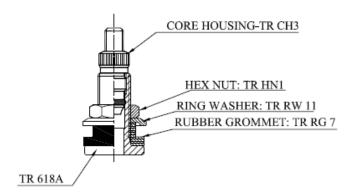

All dimensions in milimeters

FIG. 19 RUBBER COVERED TUBE VALVE — PASSENGER CAR, JEEP, SCOOTER DERIVATIVES, FRONT TRACTOR LIGHT TRUCK, TRACTOR IMPLEMENT ANIMAL DRAWN AND FORK LIFT

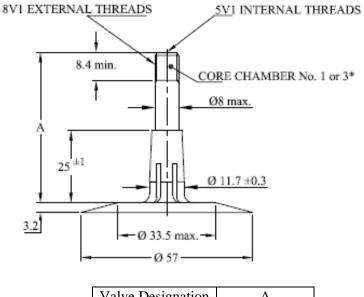
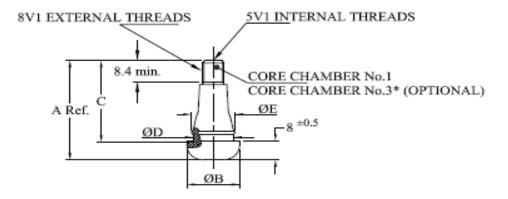

Valve	Valve Hole	Installation Torque
Designation	Size in Rim	
(TR Code)		
TR 618A	$\emptyset 15.7^{+0.4}_{0}$	5-8 Nm

FIG. 20 TUBELESS CLAMP-IN TRACTOR VALVE AIR- WATER FILLING TYPE (see Fig. 21 for Assembly)

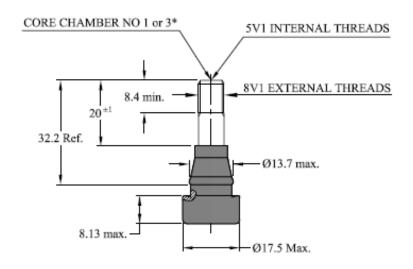
All dimensions in millimetres.


FIG. 21 TUBELESS CLAMP-IN TRACTOR VALVE ASSEMBLY

Valve Designation	A
B 57 3 57	57
B 46 3 57	46

All dimensions in milimeters

FIG. 22 RUBBER COVERED TUBE VALVES - PASSENGER CAR


Valve	A	B ±0.5	C_{-2}^{+1}	D	$E_{0}^{+0.5}$	Valve Hole
Designation			_		· ·	Size in Rim
F 25 3 19 ¹⁾	33.0	19.5	25.5	15.0 min.	16.0	$\emptyset 11.3^{+0.4}_{0}$
F 35 3 19	42.5	19.5	35	15.0 ^{±0.3}	16.0	$\emptyset 11.3^{+0.4}_{0}$
F 41 3 19	48.5	19.5	41	15.0 ^{±0.3}	16.0	Ø11.3 ^{+0.4}
F 54 3 19	61.5	19.5	54	15.0 min.	16.0	Ø11.3 ^{+0.4}
F 67 3 19	74.0	19.5	66.5	15.0 min.	16.0	Ø11.3 ^{+0.4}
F 49 3 19	56.5	19.5	49	15.0 min.	16.0	$\emptyset 11.3^{+0.4}_{0}$
F 35 5 24	42.5	24.0	35	19.2 min.	20.2	$\emptyset 15.7^{+0.4}_{0}$
F 54 5 24	61.5	24.0	54	19.2 min.	20.2	Ø15.7 ^{+0.4}
F 35 1 16	42.0	16.0	35	12.3 min.	13.2	Ø8.8 ^{+0.3}

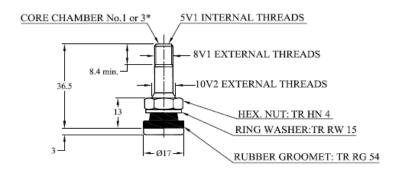
¹⁾ CORE CHAMBER NO.3 FOR F 25 3 19

NOTE — Products for use up to 450 kPa cold inflation pressure maximum & 210 kmph maximum

All dimensions in milimeters

FIG. 23 RUBBER COVERED TUBELESS SNAP-IN VALVES

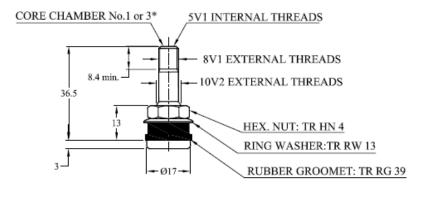
^{*}ACCOMODATES SHORT CORE ONLY


Valve	Valve Hole
Designation	Size in Rim
F 35 3 17	$\emptyset 11.3^{+0.4}_{0}$

^{*} Accommodates short core only

NOTE — Products for use up to 550 kPa Cold Inflation Pressure Maximum & 210 Kmph Maximum.

All dimensions in millimetres.


FIG. 24 RUBBER COVERED TUBELESS SNAP-IN SCOOTER VALVES

Valve	Valve Hole	Installation Torque
Designation	Size in Rim	
(TR Code)		
TR 416 S	$\emptyset 11.3^{+0.4}_{0}$	3-5 Nm

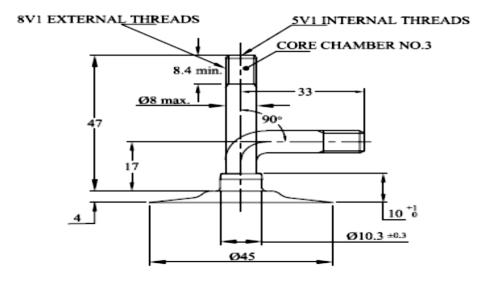
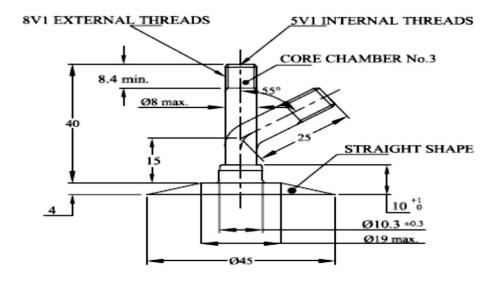

All dimensions in millimetres.

FIG. 25 TUBELESS CLAMP-IN PASSENGER CAR VALVES

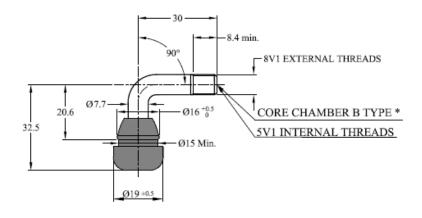
Valve	Valve Hole	Installation Torque
Designation	Size in Rim	
(TR Code)		
TR 416	Ø15.7 ^{+0.4}	3-5 Nm


All dimensions in millimetres. FIG. 26 TUBELESS CLAMP-IN PASSENGER CAR VALVES

NOTE —

- 1) These valve accommodate only the appropriate short core
- 2) Designation with suffix SB indicated single bent valve.

FIG. 27 SCOOTER VALVES A 47 2 45 (Base- Ball Shape/ Straight Shape)

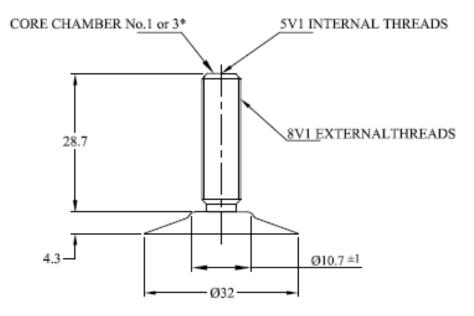


NOTES —

- 1) These valve accommodate only the appropriate short core
- 2) Designation with suffix 'SB' indicated single bent valve.

All dimensions in milimeters

FIG. 28 SCOOTER VALVES A 40 2 45 (BASE – STRAIGHT SHAPE/ BELL SHAPE)



Valve	Valve	
Designation	Hole Size	
(JATMA)	in Rim	
PVR 70	$\emptyset 11.3^{+0.4}_{0}$	

NOTE — Products for use up to 450 kPa cold inflation pressure maximum & 210 kmph maximum * Accomodates short core only

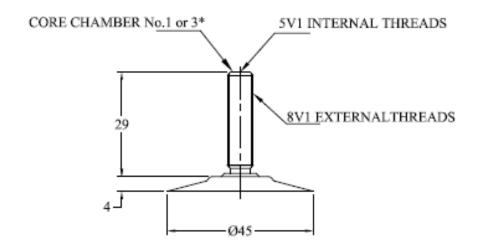
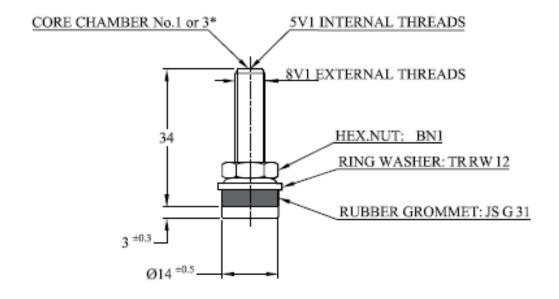

All dimensions in millimetres.

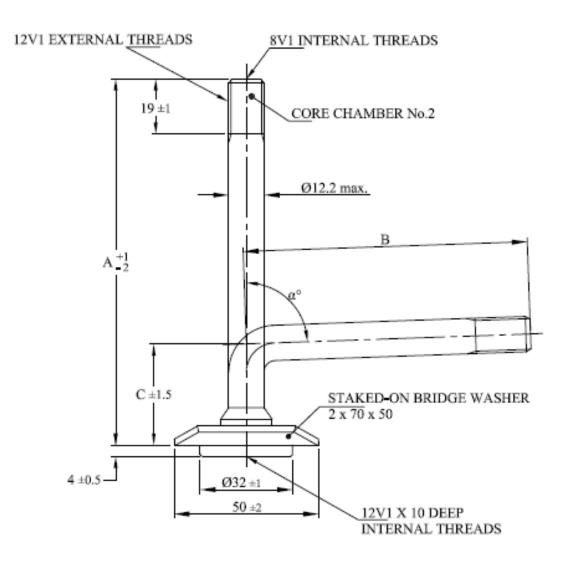
FIG. 29 RUBBER COVERED TUBELESS SNAP-IN SCOOTER VALVES

* Accomodates short core only


All dimensions in milimeters. FIG. 30 MOPED VALVE A 29 1 32

NOTE — The top of rubber base shall have an appropriate shape as shown to allow tubes at valve region to set correctly with certain shallow well rims.

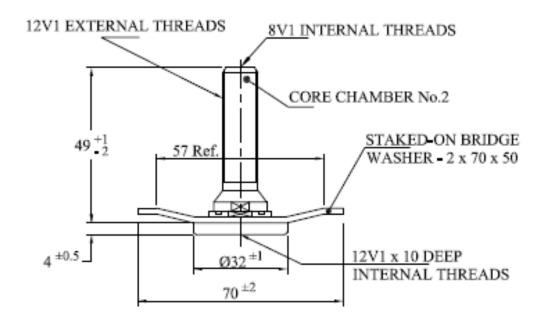
* Accomodates short core only


All dimensions in millimeters FIG. 31 MOTORCYCLE VALVES A 29 1 45

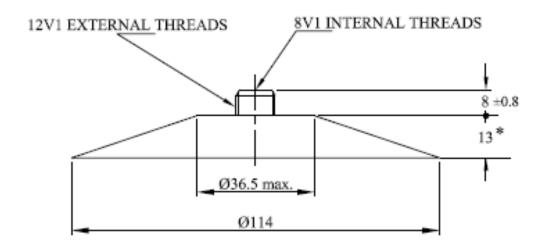
* Accomodates short core only

Valve	Valve	Installation Torque	
Designation	Hole Size	_	
(JATMA)	in Rim		
JS 430	$\emptyset 8.3^{+0.3}_{0}$	3-5 Nm	

All dimensions in millimetres.
FIG. 32 TUBELESS CLAMP-IN MOTOR CYCLE VALVE

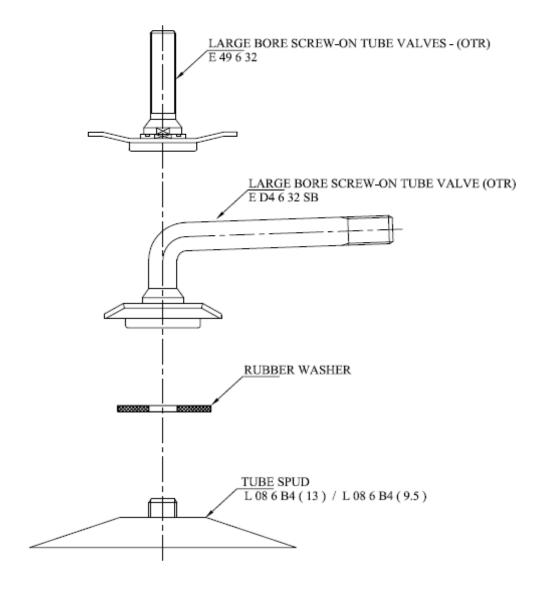


Valve Designation	A	В	C	a°
E D4 6 32	134			
E D4 6 32 - SB		105	35	88°

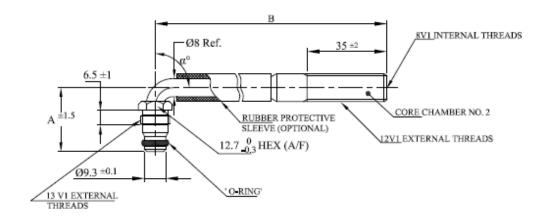

NOTE — Available in straight or bend form.

All dimensions in millimetres

FIG. 33 LARGE BORE SCREW-ON TUBE VALVES - (OTR)E D 4 6 32 AND E D4 6 32 SB (FOR SIDE ELECATION OF BRIDGE WASHER, SEE FIG. 22)



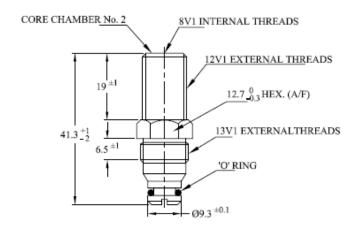
All dimensions in millimetres. FIG. 34 LARGE BORE SCREW-ON TUBE VALVES - (OTR) E 49 6 32


All dimensions in millimetres. FIG. 35 TUBE SPUD L 08 6 B4

^{*}Valve available with rubber base thickness of 9.5 mm on special order

All dimensions in millimetres.

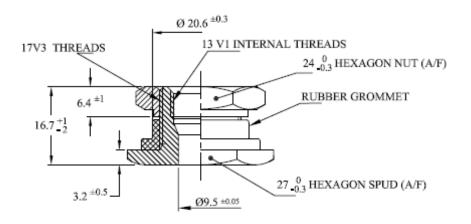
FIG. 36 LARGE BORE SCREW-ON TUBE VALVES – ASSEMBLY

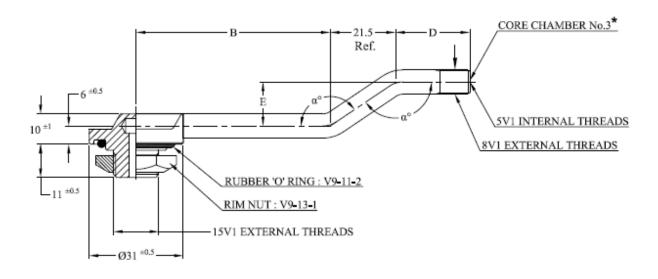


Valve Designation	$lpha^\circ$	A	В
R 79 6 09 – SB	80	27	79
R B9 6 09 – SB	90	32	119

NOTE — These swivel stems to be assembled with tubeless spud S 17 7 27 to be available in several standard lengths and 12.5 mm increment (Dimension B).

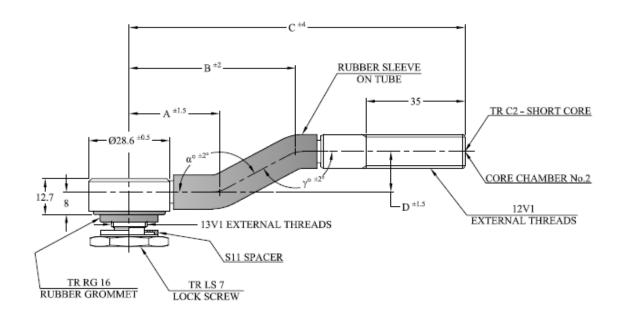
All dimensions in millimetres.


FIG. 37 LARGE BORE (OTR) VALVES R 79 6 09 SB AND R B9 6 SB - SWIVEL TYPE SINGLE BEND


NOTE — This straight stem to be assembled with tubeless spud S 17 7 27

All dimensions in millimetres.

FIG. 38 LARGE BORE (OTR) VALVES R 41 6 09 STRAIGHT TYPE


All dimensions in millimetres. FIG. 39 LARGE BORE (OTR) SPUD (TUBELESS SPUD) S 17 7 27

Valve designation (ETRTO)	$B^{\pm 2}$	$D^{\pm 2}$	$E^{\pm 1.5}$	a°±2	Valve Hole Size in Rim	Installation Torque
V3.18.1	64	24.5	14.5	146	$20.5_0^{+0.5}$	25-31 Nm
V3.18.2	81	24.5	14.5	146	20.00	
V3.18.5	68	37.5	19.5	138		

*ACCOMMODATES SHORT CORE ONLY

All dimensions in millimeters. FIG. 40 TUBELESS CLAMP-IN TRIPLE BEND - TRUCK AND BUS VALVES

Valve Designation (TR Code)	$A^{\pm 1.5}$	$B^{\pm 2}$	$\mathcal{C}^{\pm 4}$	D ^{±1.5}	a°±2	γ°±2	Valve Hole Size in Rim	Installation Torque
TR J690	31.75	58.6	119	14.2	152	152	20.500.5	20 - 23 Nm
TR J692	31.75	58.6	119	14.2	162	152	20.5 ₀	20 - 23 MIII

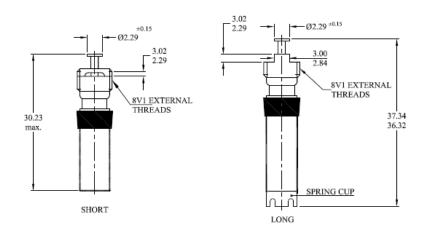
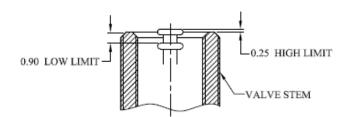
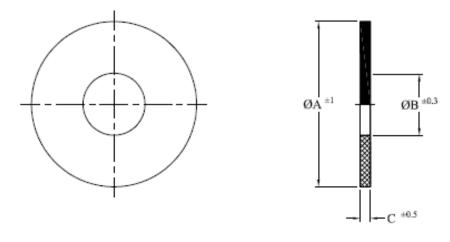

All dimensions in millimeters.

FIG. 41 LARGE BORE TUBELESS CLAMP-IN TURRET TYPE VALVES – OTR

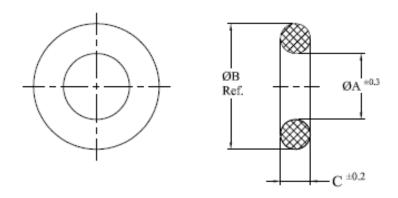

SHORT CORE

OUTSIDE SPRING #0.15 -01.78 1.75 20MAX 5V1 EXTERNAL THREADS INSIDE SPRING #0.15 20MAX 5V1 EXTERNAL THREADS

NOTE – Recommended torque at installation 0.23 - 0.56 Nm (A) Type 1 valve Core – Standard Bore



NOTE – Recommended torque at installation 0.34 -0.56 Nm (B) Type 2 valve Core – Large Bore


(C) Core Pin Head Position – Type 1 & Type 2

All dimensions in millimetres FIG. 42 VALVE CORE

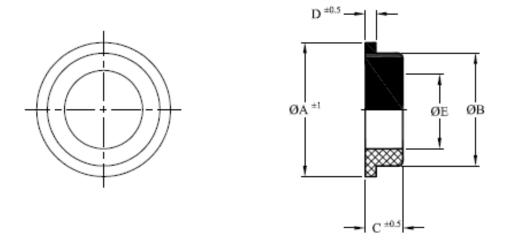

(Code	ØA	ØВ	C
T-F	RUW 55	32	12.3	2
V	9.05.1	24	8	2.5

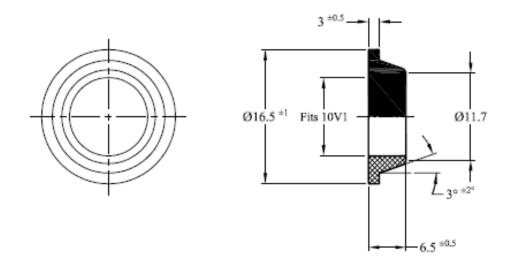
FIG. 43 RUBBER WASHERS

Code	ØA	ØB	C
TR RG 60/ V9.11.5	8.9	12.7	1.9
TR RG 66	6	9.6	1.8
TR RG 67	4.4	8	1.8

FIG. 44 RUBBER O-RINGS All dimensions in millimeters.

Code	ØA	ØB	С	D	ØE Fits to
TR RG 7	22.4	16	8.65	3.2	12V1
TR RG 22	25.4	20.6	6.4	2.3	17V3
TR RG 39/ V9.10.8	18	16	8	2.3	10V2
JS G31	14	10	5	4	8V1

FIG. 45 RUBBER GROMMET



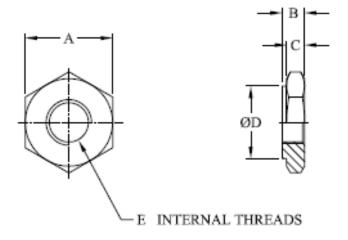


FIG. 46 RUBBER GROMMET – TR RG 54 All dimensions in millimetres.

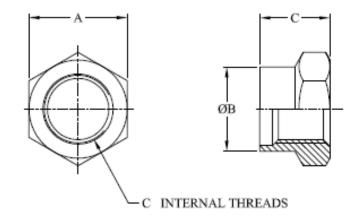

Code	$A_{-0.3}^{0}$	В	C
TR HN 1	16	4.8	12V1
TR HN 4 / V9.08.2	14	5	10V2
BN 1	12	4	8V1

FIG. 47 HEX. NUTS

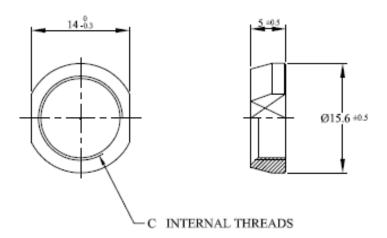

Code	$A_{-0.3}^{0}$	$B^{\pm 0.5}$	<i>C</i> ^{±0.5}	$D^{\pm 0.5}$	E
TR HN 15 / V9.09.1	24	6.4	4.8	20.3	17V3
TR HN 22	16	10.2	5.2	15.5	9V1

FIG. 48 HEX. NUTS All dimensions in millimetres.

Code	$A_{-0.3}^{0}$	В	$C^{\pm 0.5}$
V9.07.2	14	12	10V1
V9.07.4-M	14	12	10V1

FIG. 49 RIM NUT

Code	$C^{\pm 0.5}$
T-LN 53	12V1

FIG. 50 RIM NUT All dimensions in millimeters.

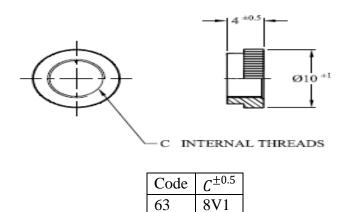
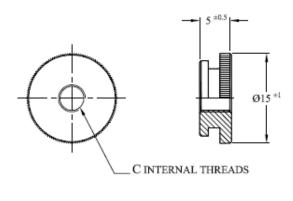



FIG. 51 RIM NUT

Code	$\mathcal{C}^{\pm 0.5}$
252	8V1

FIG. 52 RIM NUT

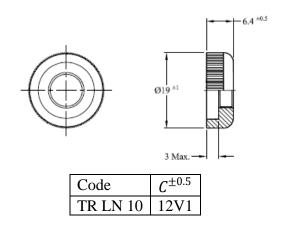
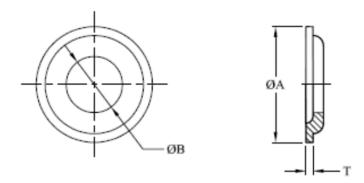
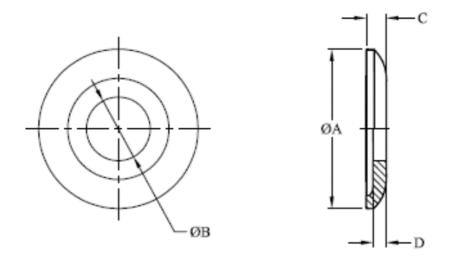




FIG. 53 RIM NUT All dimensions in millimeters.

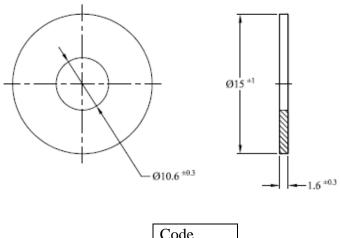

Code	$A^{\pm 1}$	$B^{\pm 0.2}$	$T^{\pm 0.2}$
TR RW 3	27	12.4	1.4
TR RW 11	23.4	12.4	1.6
TR RW 12	16	8	1.6
T-RW 52	24	10.8	1.6

FIG. 54 RING WASHERS

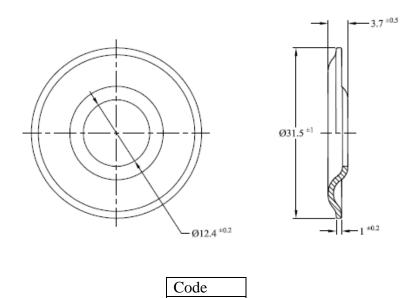

Code	$A^{\pm 1}$	$B^{\pm 0.2}$	$\mathcal{C}^{\pm 0.5}$	$D^{\pm 0.2}$
TR RW 8 /	19	10.5	2.5	1.4
V9.01.4	17	10.5	2.3	1.1
TR RW 13	19	10.5	1.5	0.8

FIG. 55 RING WASHERS All dimensions in millimeters.

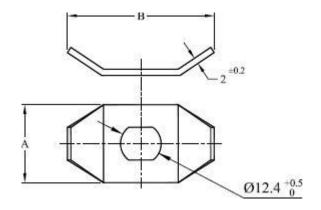
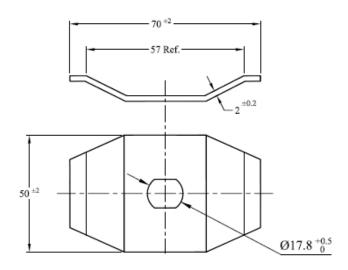

Code TR RW 15

FIG. 56 RING WASHER


T- RW 59

All dimensions in millimeters. FIG. 57 RING WASHERS

Code	$A^{\pm 1.5}$	$B^{\pm 2}$
TR BW 1	24	47
TR BW 2	28.5	54
TR BW 3	33	57

All dimensions in millimeters. FIG. 58 BRIDGE WASHERS

Code
TR BW 18

All dimensions in millimeters. FIG. 59 BRIDGE WASHERS

ANNEX A (Foreword)

VALVE & VALVE CORE DESIGNATION CROSS REFERENCE

SI.		TR CODE	
NO	BIS CODE	CROSS	FIG. No
110		REFERENCE	
1	A 65 5 82	TR 227	FIG.2
2	A 83 5 82	TR 274A	F1G.2
3	A 97 5 82	TR 75A	F10.2
4	A A6 5 82	TR76A	F10.2
5	ABI 582	-	FIG.2
6	A B4 5 82	TR 177A	F10.2
7	A C3 5 82	TR 77A	FIG.2
8	A D4 5 82	TR 175A	FIG.2
9	A E7 5 82	TR 78A	F10.2
10	A GO 5 82	TR 179A	P10.2
11	A 65 5 95	TR 227	FIG.2
12	A 83 5 95	TR 274A	FIG.2
13	A 97 5 95	TR 75A	F1G.2
14	A A6 5 95	TR76A	FIG.2
15	A BI 5 95	-	F1G.2
16	A B4 5 95	TR 177A	F1G.2
17	A C3 5 95	TR 77A	FIG.2
18	A D4 5 95	TR 175A	FIG.2
19	A E7 5 95	TR 78A	F1G.2
20	AGO 5 95	TR 179A	FIG.2
21	A 95 5 95	-	F10.4
22	B 205 63	TR 218A	FIGA I
23	8 30 5 63	TR 220A	FIGA I
24	B 20 5 82	-	FIGA I
25	B 30 5 82	-	FIGA I
26	CH3	TR CH3	FIG.12
27	B 35 3 57	TR 13	FIG.14
28	1335 4 57	TR 14	FIG.14
29	B 35 5 57	TR is	F10.14

SI. NO 30 31 32 33 34 35	BIS CODE B 35 1 57 B 57 3 57 B 46 3 57 F 25 3 19	TR CODE CROSS REFERENCE - -	FIG. No FIG.14 FIG.15
31 32 33 34	B 57 3 57 B 46 3 57	-	
32 33 34	B 46 3 57	-	FIG 15
33 34			110.15
34	F 25 3 19	-	FIG.15
		TR412	F10.16
35	F 35 3 19	TR 413	FIG.16
33	F 41 3 19	TR 414	F16.16
36	F 54 3 19	TR 418	F10.16
37	F 67 3 19	TR 423	FIG.16
38	F 49 3 19	TR 414L (V2-03-8)	FIG.16
39	F 35 5 24	TR 415	F10.16
40	F 54 5 24	TR 425	P10.16
41	F 35 1 16	TR 438	FIG.16
42	A 291 32	-	FIG.19
43	A 29 1 45	-	FIG.20
44	E D4 6 32	TR1 1175A-M	FIG.21
45	E D4 6 32 SB	TR J 1175C-M	F1G.21
46	E 49 6 32	TR31014-M	F1G.22
47	L 08 6 B4	TR SP 1000	F1G.23
48	R 79609SB	TR 1 650	F10.25
49	R B9 6 09 SB	TRJ 651	F1G.25
50	R 41 609	TR 1670	F1G.26
51	S 17 7 27	TR SP2	FIG.27
52	TYPE 1 SHORT	TR CI SHORT	FIG.28
53	TYPE 2- SHORT	TR C2 SHORT	110.28
54	TYPE 2- LONG	TR C2 LONG	F1G.28
ETRTO CODE			
55	A 47 2 45	V1.08.1	FIG.17
56	A 40 2 45	V1.08.3	F10.18

		TR CODE	
SI.	BIS CODE	CROSS	FIG. No
NO	225 0022	REFERENCE	1101110
57	-	TR 416 S	FIG.31
58	-	TR 416	FIG.32
59	-	TR 542	FIG.34
60	_	TR 543	F1G.34
61	-	TR 543C	FIG.34
62	-	TR 543D	FIG.34
63	-	TR 543E	FIG.34
64	-	TR 544	FIG.34
65	-	TR 5440	F16.34
66	-	TR 54413	FIG.34
67	-	TR 545	FIG.34
68	-	TR 545D	FIG.34
69	-	TR 545E	FIG.34
70	-	TR 546	FIG.34
71	-	TR 546-36	FIG.34
72	-	TR 546 D	FIG.34
73	-	TR 546 E	F1G.34
74	-	TR 547 D	FIG.34
75	-	TR 575	F10.36
76	-	TR 500	FIG.36
77	-	TR 501	F1G.36
78	-	TR 570	FIG.36
79	-	TR 571	FIG.36
80	-	TR 572	FIG.36
81	-	TR 573	FIG.36
82	-	TR 574	F1G.36
83	-	'FR 570C	FIG.36
84	-	TR 571C	FIG.36
85	-	TR 572C	F1G.36
86	-	TR 573C	F16.36
87	-	TR 618 A	FIG.37
JATM	IA CODE		
88	-	JS 430	FIG.29
89	-	PVR 70	FIG.30

SI. NO	BIS CODE	TR CODE CROSS REFERENCE	FIG. No
90	-	V3.08.2	FIG.7
91	-	V3.08.3	FIG7
92	-	V3.08.4	FIG.7
93	-	V3.02.7	FIG.8
94	-	V3.02.8	FIGS
95	-	V3.02.9	FIG.8
96	-	V3.02.10	FIG.8
97	-	V3.02.11	FIG.8
98	-	V3.02.12	FIG.8
99	-	V3.02.I4	FIGS
100	-	V3.02.15	FIG.8
101	-	V3.02.I6	FIG.8
102	-	V3.02.I8	FIGS
103	-	V3.02.19	FIG.8
104	-	V3.02.20	FIG.8
105	-	V3.02.26	FIG.8
106	-	V3.02.27	FIG.8
107	-	V3.02.29	FIG.8
108	-	V3.04.4	FIG.9
109	-	V3.04.5	FIG.9
110	-	V3.04.6	110.9
111	-	V3.04.10	FIG.9
112	-	V3.04.I I	FIGS
113	-	V3.04.I5	FIG.9
114	-	V3.04.21	FIG.9
115	-	V3.04.25	FIG.9
116	-	V3.06.5	FIG.10
117	-	V3.06.6	FIG.10
118	-	V3.06.7	FIG.10
119	-	V3.06.8	FIG.10
120	-	V3.06.9	FIG.10
121	-	V3.06.16	FIG.10
122	-	V3.06.17	FIG.10
123	-	V3.20.1	FIG.33
124	-	V3.20.2	FIG.33
125	-	V3.20.3	FIG.33
126	-	V3.20.4	FIG.33
127	-	V3.20.5	FIG.33
128	-	V3.20.6	FIG.3;
129	-	V3.20.7	FIG.33
130	-	V3.20.8	FIG.33
131	-	V3.20.9	FIG.33
132	-	V3.20.10	FIG.33
133	-	V3.20.I I	FIG.33
134	-	V3.20.12	FIG.33
135	-	V3.22.I	F1G.35

ANNEX B (Foreword)

COMMITTEE COMPOSITION

Automotive Tyres, Tubes and Rims Sectional Committee, TED 7

Will be added later