For Comments Only

BUREAU OF INDIAN STANDARDS

DRAFT FOR COMMENTS ONLY

(Not to be reproduced without the permission of BIS or used as an Indian Standard)

भारतीय मानक मसौदा

अंतरिक्ष प्रणाली — जोखिम प्रबंधन

Draft Indian Standard

SPACE SYSTEMS — RISK MANAGEMENT

ICS: 49.140

Air and Space Vehicles Sectional Committee, Last date for receipt of comments is XX/XX/XXXX

© BIS 2023
BUREAU OF INDIAN STANDARDS
MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG
NEW DELHI 110002

Air and Space Vehicles Sectional Committee, TED 14

NATIONAL FOREWORD

(Formal clauses to be added later)

This draft Indian Standard which is identical with ISO 17666: 2016 'Space Systems — Risk Management' issued by International Organization for Standardization (ISO), will be adopted by the Bureau of Indian Standards on the recommendations of Air and Space Vehicles Sectional Committee and approval of the Transport Engineering Division Council.

The fields of application of this document are all the space project phases. A definition of project phasing is given in ISO 14300-1.

The text of ISO standard is proposed for publication as an Indian Standard without deviations. Certain terminologies and conventions are, however, not identical to those used in Indian Standards. Attention is particularly drawn to the following:

- a) Wherever the words 'International Standard' appear referring to this standard, they should be read as 'Indian Standard'.
- b) Comma (,) has been used as a decimal marker, while in Indian Standards, the current practice is to use a point (.) as the decimal marker.

The technical committee has reviewed the provisions of following International Standards referred in this adopted standard and has decided that they are acceptable for use in conjunction with this standard:

Attention is drawn to the possibility that some of the elements of this standard may be the subject of patent rights. The Bureau of Indian Standards shall not be held responsible for identifying any or all such patent rights.

For the purpose of deciding whether a particular requirement of this standard is complied with, the final value, observed or calculated, expressing the result of a test or analysis, shall be rounded off in accordance with IS 2: 2022 'Rules for rounding off numerical values (*second revision*)'. The number of significant places retained in the rounded off value should be the same as that of the specified value in this standard.

INTRODUCTION

Risks are a threat to the project success because they have negative effects on the project cost, schedule and technical performance, but appropriate practices of controlling risks can also present new opportunities with positive impact.

The objective of project risk management is to identify, assess, reduce, accept, and control space project risks in a systematic, proactive, comprehensive, and cost-effective manner, taking into account the project's technical and programmatic constraints. Risk is considered tradable against the conventional known project resources within the management, programmatic (e.g. cost, schedule), and technical (e.g. mass, power, dependability, safety) domains. The overall risk management in a project is an iterative process throughout the project life cycle, with iterations being determined by the project progress through the different project phases, and by changes to a given project baseline influencing project resources.

Risk management is implemented at each level of the customer-supplier network.

Known project practices for dealing with project risks, such as system and engineering analyses, analyses of safety, critical items, dependability, critical path, and cost, are an integral part of project risk management. Ranking of risks according to their criticality for the project success, allowing management attention to be directed to the essential issues, is a major objective of risk management.

The project actors agree on the extent of the risk management to be implemented into a given project depending on the project definition and characterization.

1 SCOPE

This document defines, extending the requirements of ISO 14300-1, the principles and requirements for integrated risk management on a space project. It explains what is needed to implement a project-integrated risk management policy by any project actor, at any level (i.e. customer, first-level supplier, or lower-level suppliers).

This document contains a summary of the general risk management process, which is subdivided into four (4) basic steps and nine (9) tasks. The implementation can be tailored to project-specific conditions.

The risk management process requires information exchange among all project domains and provides visibility over risks, with a ranking according to their criticality for the project; these risks are monitored and controlled according to the rules defined for the domains to which they belong.

The fields of application of this document are all the space project phases. A definition of project phasing is given in ISO 14300-1.

When viewed from the perspective of a specific programme or project context, the requirements defined in this document are tailored to match the genuine requirements of a particular profile and circumstances of a programme or project.

NOTE Tailoring is a process by which individual requirements or specifications, standards, and related documents are evaluated and made applicable to a specific programme or project by selection, and in some exceptional cases, modification and addition of requirements in the standards.

FOR COMPLETE TEXT OF THE DOCUMENT KINDLY REFER ISO 17666 : 2016 or CONTACT:

P. V. Srikanth
Scientist- D & Head
Transport Engineering Department
Bureau of Indian Standards
9 Bahadur Shah Zafar Marg
New Delhi 110 002

Email: ted@bis.org.in, hted@bis.org.in

Telefax: 011- 2323 6311